LINEAR CLASSIFIERS



Classification: Problem Statement

In regression, we are modeling the relationship
between a continuous input variable x and a
continuous target variable t.

In classification, the input variable x may still be
continuous, but the target variable is discrete.

In the simplest case, t can have only 2 values.

e.g., Lett=+1 assigned to (.
t= 1 assigned to C,
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Example Problem
.

-1 Animal or Vegetable?

XORK ' CSE 4404 /5327 Introduction to Machine Learning and Pattern Recognition J. Elder

IVERSITE
UNIVERSITY




Linear Models for Classification

Linear models for classification separate input vectors into
classes using linear (hyperplane) decision boundaries.

Example:

2D Input vector x
Two discrete classes C, and C,
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Two Class Discriminant Function

y>0 L2

y(x)=w'x+w,

y(X)=0— X assigned to C,

y(X) <0 — x assigned to C,

Thus y(x)= 0 defines the decision boundary
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Two-Class Discriminant Function

y(X)=w'X+w,

y(x)=0— x assigned to C,
y(x) <0 — x assigned to C, y <0

For convenience, let

t t
W = I:Wl"'WM:| = |:WO Wl...WMi|

and

X = [xl...xMT = [l xl...xMT

So we can express y(x)= w'x
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Generalized Linear Models

For classification problems, we want y to be a predictor of t. In other
words, we wish to map the input vector into one of a number of discrete
classes, or to posterior probabilities that lie between O and 1.

For this purpose, it is useful to elaborate the linear model by introducing a
nonlinear activation function f, which typically will constrain y to lie between
-1 and 1 or between O and 1.

y(x)= f(wtx + WO)

i

Log-sigmoid function Tan-sigmoid function Linear function
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The Perceptron

t y(X) =0 — x assigned to C
y(x)=f(wx+w0) | 1
y(X)< 0 — X assigned to C,
A classifier based upon this simple generalized linear model is
pPie g

called a (single layer) perceptron.

It can also be identified with an abstracted model of a neuron
called the McCulloch Pitts model.

X ]»_';\ .
Wo sy -
-
w, \
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Parameter Learning
I

1 How do we learn the parameters of a perceptron?
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Qutline

The Perceptron Algorithm
Least-Squares Classifiers
Fisher’s Linear Discriminant
Logistic Classifiers

Support Vector Machines
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Case 1. Linearly Separable Inputs

For starters, let’s assume that the training data is in
fact perfectly linearly separable.

In other words, there exists at least one hyperplane
(one set of weights) that yields O classification error.

We seek an algorithm that can automatically find
such a hyperplane.




The Perceptron Algorithm

The perceptron algorithm was
invented by Frank Rosenblatt

T
T

-

962).

ne algorithm is iterative.

ne strategy is to start with o

random guess at the weights w,
and to then iteratively change

the weights to move the

hyperplane in a direction that

lowers the classification error.




The Perceptron Algorithm

Note that as we change the weights continuously,
the classification error changes in discontinuous,

piecewise constant fashion.

Thus we cannot use the classification error per se as
our objective function to minimize.

What would be a better objective function?




The Perceptron Criterion

Note that we seek w such that

w'x >0 when t = +1
w'x <0 when t = -1

In other words, we would like
w’xntn >0 Vn
Thus we seek to minimize

E, (w) =-> wix t

where M is the set of misclassified inputs.
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The Perceptron Criterion

E, (w) =— 2 wx t

neM
where ‘M is the set of misclassified inputs.

Observations:
E.(w) is always non-negative.

E.(w) is continuous and
piecewise linear, and thus
easier to minimize.
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The Perceptron Algorithm

E, (w) =— 2 wx t

neM
where ‘M is the set of misclassified inputs.

dE_(w
%:‘%M""* =)

where the derivative exists.

Gradient descent:

w =wf—nVEP(w)=wT+n2xntn \/
neM
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The Perceptron Algorithm

W‘L'+

1=WT—nVEP(w)=wt+n2xntn
neM
Why does this make sense?

If an input from C, (t = +1) is misclassified, we need to
make its projection on w more positive.

If an input from C, (t = -1) is misclassified, we need to
make its projection on w more negative.
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The Perceptron Algorithm

The algorithm can be implemented sequentially:

Repeat until convergence:
For each input (x , 1 ):
If it is correctly classified, do nothing
If it is misclassified, update the weight vector to be
w=w'4+nx t
Note that this will lower the contribution of input n to the
objective function:

—(w‘”)t Xt — —(w(””)t xt = —(w(”)t Xt — n(xntn)t Xt < —(w(”)t xt.
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Not Monotonic

While updating with respect to a misclassified input
n will lower the error for that input, the error for
other misclassified inputs may increase.

Also, new inputs that had been classified correctly
may now be misclassified.

The result is that the perceptron algorithm is not
guaranteed to reduce the total error monotonically
at each stage.
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The Perceptron Convergence Theorem

Despite this non-monotonicity, if in fact the data are
linearly separable, then the algorithm is
guaranteed to find an exact solution in a finite
number of steps (Rosenblatt, 1962).
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Example
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The First Learning Machine
=

- Mark 1 Perceptron Hardware (c. 1960)

Visual Inputs Patch board allowing Rack of adaptive weights w
configuration of inputs @ (motor-driven potentiometers)
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Practical Limitations

The Perceptron Convergence Theorem is an
important result. However, there are practical
limitations:

Convergence may be slow

If the data are not separable, the algorithm will not
converge.

We will only know that the data are separable once
the algorithm converges.

The solution is in general not unique, and will depend
upon initialization, scheduling of input vectors, and the
learning rate 7.
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Generalization to inputs that are not linearly separable.

The single-layer perceptron can be generalized to
yield good linear solutions to problems that are not
linearly separable.

Example: The Pocket Algorithm (Gal 1990)

ldea:
Run the perceptron algorithm

Keep track of the weight vector w* that has produced the
best classification error achieved so far.

It can be shown that w* will converge to an optimal solution
with probability 1.
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Generalization to Multiclass Problems

How can we use perceptrons, or linear classifiers in
general, to classify inputs when there are K > 2

classes?
A
Labell Label2
X o ©
O O O o © .

Oa O )

O O

Label3
0O
NN
C L D
] N {: :
=
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K>2 Classes

ldea #1: Just use K-1 discriminant functions, each of
which separates one class (, from the rest. (One-

versus-the-rest classifier.)

Problem: Ambiguous regions

Rs

not Cq

not Co
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K>2 Classes

ldea #2: Use K(K-1)/2 discriminant functions, each
of which separates two classes C;, (; from each
other. (One-versus-one classifier.)

Each point classified by majority vote.

Problem: Ambiguous regions
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K>2 Classes

ldea #3: Use K discriminant functions y, (x)

Use the magnitude of y, (x), not just the sign.
Y, (X)=w;Xx

x assigned to C, if y, (x)> yj(x)Vj #k

Decision boundary y, (x) = yj(x) - (Wk -w, )t X+ (Wko — Wjo) =0

Results in decision regions that are
simply-connected and convex.

—® X B

R
XA o=— §
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Example: Kesler’s Construction

The perceptron algorithm can be generalized to K-
class classification problems.

Example:

Kesler’s Construction:

Allows use of the perceptron algorithm to simultaneously
learn K separate weight vectors w..

Inputs are then classified in Class i if and only if
WX > WX Vj#i
The algorithm will converge to an optimal solution if a

solution exists, i.e., if all training vectors can be correctly
classified according to this rule.

YORK
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1-of-K Coding Scheme

When there are K>2 classes, target variables can
be coded using the 1-of-K coding scheme:

Input from Class C. < t=[00 ...1...0 O]

T

Element |
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Computational Limitations

ST
ST

£
Y

Initially, the perceptron was
thought to be a potentially
powerful learning machine that
could model human neural
processing.

However, Minsky & Papert
(1969) showed that the single-
layer perceptron could not learn
a simple XOR function.

This is just one example of a
non-linearly separable pattern
that cannot be learned by o
single-layer perceptron.

of Perceptrons

Marvin Minsky (1927 -
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Multi-Layer Perceptrons
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Minsky & Papert’s book was widely

misinterpreted as showing that
artificial neural networks were
inherently limited.

This contributed to a decline in the
reputation of neural network
research through the 70s and 80s.

However, their findings apply only
to single-layer perceptrons. Multi-
layer perceptrons are capable of
learning highly nonlinear functions,
and are used in many practical
applications.
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- End of Lecture 11
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The Perceptron Algorithm
Least-Squares Classifiers
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Logistic Classifiers
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Dealing with Non-Linearly Separable Inputs

The perceptron algorithm fails when the training
data are not perfectly linearly separable.

Let’s now turn to methods for learning the
parameter vector w of a perceptron (linear
classifier) even when the training data are not
linearly separable.
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The Least Squares Method

In the least squares method, we simply fit the (x, t)
observations with a hyperplane y(x).

Note that this is kind of a weird ideq, since the t
values are binary (when K=2), e.g., O or 1.

However it can work pretty well.
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Least Squares: Learning the Parameters

Assume D —dimensional input vectors x.

Foreachclass ke1...K:

Y, (X)= wf{x +Ww,,

t

— y(x)= W'x
where
x=(1,x")

W is a (D +1) x K matrix whose kth column is W, = (WO,WZ)t
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Learning the Parameters

Method #2: Least Squares
y(x)=W

Training dataset (xn,tn), n=1...,N
where we use the 1-of-K coding scheme for t_

Let T be the N x K matrix whose n" row is t’

Let X be the N x (D +1) matrix whose n" row is x
Let R, (W)=XW-T
Then we define the error as E ( ) ZR —Tr{ (W)t RD(W)}

Setting derivative wrt W to 0 yields:
W= (XX) XT=X'T

YORK
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Fisher’s Linear Discriminant

Another way to view linear discriminants: find the 1D subspace
that maximizes the separation between the two classes.

Let m, :Ninn, mZ:Ninn

1 neC; 2 neC,
For example, might choose w to maximize w' (m2 — m1), subject to HWH =1

This leads to w o m,-m,

4t e
0.\ \\.'," Lo
However, if conditional distributions are not isotropic, ) "'l["
this is typically not optimal. | T
-2 2 6
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Fisher’s Linear Discriminant

Let m =w'm, m,=w'm, be the conditional means on the 1D subspace.

Let S;f = 2 ( Yy, - mk)2 be the within-class variance on the subspace for class C,

neC,
2
: e (mz o 1) s
The Fisher criterion is then J(w)=-~———~ 4 .
Sy +S, \ R
) . 5l ‘/* o Rt T '
This can be rewritten as g/ AYT
e R
t . )
wS w .
J(W) = 8 or —
w'S, w ?
where -2
t, . . .
S, = (m2 — m1)(m2 — m1) is the between-class variance 5 ) 6

and

S, =2 (xn - m1)(xn - m1)t + (xn - mz)(xn - mz)t is the within-class variance

neC1 neC2

J(w) is maximized forw « S/ (m2 —~ m1)
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Connection between Least-Squares and FLD

Change coding scheme used in least-squares method to

t =%for€1

Then one can show that the ML w satisfies
WoS (m2 — m1)
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Least Squares Classifier
s

-1 Problem #1: Sensitivity to outliers
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Least Squares Classifier

Problem #2: Linear activation function is not a
good fit to binary data. This can lead to problems.
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Logistic Regression (K = 2)

h =
p(C,19)=1-p(C;19) e o) 1 ot a)

®
Xi,’éESO e
() e ° é ¢1
b2
o @
() ‘.. *
{ ] [ 7
L2 o %00 @
® o0 0 °
0ed/J © o
o ©
) r;, 1 €S o
Tiyi € S ) 0900 ¢ o
0 @%9) @ o
t
"M X,
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Logistic Regression

Number of parameters

Logistic regression: M

Gaussian model: 2M + 2M(M+1)/2 + 1 = M?+3M+1
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ML for Logistic Regression

N 1-t t
p(tiw)=]Tyr{1-y,} where t=(t,...,t,) andy, =p(C, |9,)

n=1

We define the error function to be E(w) = —Iogp(t | w)

Giveny = G(an) and a =w'¢ , one can show that

N

VE(W): Z(yn _tn)(Pn

n=1
Unfortunately, there is no closed form solution for w.
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- End of Lecture 12



ML for Logistic Regression:

lterative Reweighted Least Squares

Although there is no closed form solution for the ML
estimate of w, fortunately, the error function is convex.

Thus an appropriate iterative method is guaranteed to
find the exact solution.

A good method is to use a local quadratic

approximation to the log likelihood function (Newton-
Raphson update):

W(new) — W(old) . H—1VE(W)
where H is the Hessian matrix of E(w)
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ML for Logistic Regression

new) __ — W(old H 1VE( )
where H is the Hessian matrix of E(w):

w'

H=®'R®
where R is the N x N diagonal weight matrix with R =y _ (1 — yn)

(Note that, since R >0, R is positive semi-definite, and hence H is positive semi-definite
Thus E(w) is convex.)

Thus
w’ W = W (old) ((DtR(D) P! (y . t)

YO RI<E ' CSE 4404 /5327 Introduction to Machine Learning and Pattern Recognition J. Elder




ML for Logistic Regression

lterative Reweighted Least Squares
p(Ci19)=y(9)=o0(w'9)

J. Elder



Logistic Regression

For K>2, we can generalize the activation function
by modeling the posterior probabilities as

_ exp(a, )
;exp(aj)

where the activations a, are given by

p(C, 19)=y,(9)

ot
ak_wk¢
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6
Least-Squares Logistic
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Motivation

The perceptron algorithm is guaranteed to provide a
linear decision surface that separates the training datq,
if one exists.

However, if the data are linearly separable, there are
in general an infinite number of solutions, and the
solution returned by the perceptron algorithm depends
in a complex way on the initial conditions, the learning
rate and the order in which training data are
processed.

While all solutions achieve a perfect score on the
training data, they won't all necessarily generalize as
well to new inputs.
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Which solution would you choose?

J. Elder



The Large Margin Classifier

Unlike the Perceptron Algorithm, Support Vector
Machines solve a problem that has a unique
solution: they return the linear classifier with the
maximum margin, that is, the hyperplane that
separates the data and is farthest from any of the
training vectors.

Why is this good?
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Support Vector Machines

SVMs are based on the linear model y(x)= w'¢(x)+ b

Assume training data x.,...,x,, with corresponding target values
t,...t,t e{-11}

x classified according to sign of y(x).

Assume for the moment that the training data are linearly separable in feature space.

Then 3w,b:t y(x,)>0 Vne[l...N]
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Maximum Margin Classifiers

ORK
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When the training data are linearly separable, there are generally an
infinite number of solutions for (w, b) that separate the classes exactly.

The margin of such a classifier is defined as the orthogonal distance in
feature space between the decision boundary and the closest training
vector.

SVMs are an example of a maximum margin classifer, which finds the
linear classifier that maximizes the margin.

margin

' CSE 4404 /5327 Introduction to Machine Learning and Pattern Recognition

J. Elder



Probabilistic Motivation

The maximum margin classifier has a probabilistic motivation.

If we model the class-conditional densities with a KDE using
Gaussian kernels with variance ¢, then in the limit as ¢ — 0,
the optimal linear decision boundary — maximum margin linear classifier.

margin
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Two Class Discriminant Function

y>0 L2

Recall: y <0

y(X)=w'X+w,

y(x)=0— x assigned to C

y(x) <0 — x assigned to (,

Thus y(x) =0 defines the decision boundary
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Maximum Margin Classifiers

Distance of point x  from decision surface is given by:

wi

Thus we seek:

argmax {i min[ ¢, (w'(x, )+ b)}} =1

w,b ||W

margin

J. Elder



Maximum Margin Classifiers

Distance of point x _ from decision surface is given by:

wi

Note that rescaling w and b by the same factor
leaves the distance to the decision surface unchanged.

Thus, wlog, we consider only solutions that satisfy:

t (wt(p(xn)+b) =1.
for the point x  that is closest to the decision surface.

margin
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Quadratic Programming Problem

Then all points x_ satisfy t_ (wt¢(xn)+ b) >1

Points for which equality holds are said to be active.
All other points are inactive.

Now argmax {i m,j”[tn (wip(x,)+ b)}}

w,b W|

2

“ 1 argmin ||w
2

w

Subject to t_ (wt¢(xn)+ b) >1Vx_

margin

This is a quadratic programming problem.

Solving this problem will involve Lagrange multipliers.

' CSE 4404 /5327 Introduction to Machine Learning and Pattern Recognition J. Elder




- Lagrange Multipliers



Lagrange Multipliers (Appendix C.4 in textbook)

Used to find stationary points of a function
subject to one or more constraints.

Example (equality constraint): M
Maximize f(x) subject to g(x) =0.
Observations: 9(x)=0 Joseph-Louis Lagrange

1736-1813

1. At any point on the constraint surface, Vg(x) must be orthogonal to the surface.

2. Let x* be a point on the constraint surface where f(x) is maximized.
Then Vf(x) is also orthogonal to the constraint surface.

3. — dA # 0 such that Vf(x)+ AVg(x)=0 at x *.
A is called a Lagrange multiplier.

XORK ' CSE 4404 /5327 Introduction to Machine Learning and Pattern Recognition J. Elder
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Lagrange Multipliers (Appendix C.4 in textbook)

dA # 0 such that Vf(x)+ AVg(x)=0 at x *.
V()

Defining the Lagrangian function as: ea
L(x,A)=f(x)+Ag(x)

we then have

V. L(x2)=0.

and

8L(x,ﬂ.)

=0.
oA

YORI(; ' CSE 4404 /5327 Introduction to Machine Learning and Pattern Recognition J. Elder




Example

T

N

L(x,A)=f(x)+ Ag(x)

Find the stationary point of

f(x1,x2): 1-x2 = X5

7N

subject to

g(xlax2) =0

g(x1,x2)= X, +x,-1=0
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- End of Lecture 13



Inequality Constraints

Maximize f(x) subject to g(x) > 0.

There are 2 cases:
x* on the interior (e.g., X;)

Here g(x) > O and the stationary condition is simply

VF(x)=0.

This corresponds to a stationary point of the Lagrangian where

A=0.

L(x,A)=f(x)+2g(x)

x* on the boundary (e.g., x,)
Here g(x) = O and the stationary condition is
Vf(x)=-AVg(x), A >0.

This corresponds to a stationary point of the Lagrangian where

A>0.

Thus the general problem can be expressed as

maximizing the Lagrangian subject to 1. g(x)>0
2.120 Karush-Kuhn-Tucker (KKT) conditions
3.49(x)=0
XO RK ' CSE 4404 /5327 Introduction to Machine Learning and Pattern Recognition J. Elder
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Minimizing vs Maximizing

If we want to minimize f(x) subject to g(x) = O,
then the Lagrangian becomes

L(x,A)=f(x)- Ag(x)
with 1 > 0.

YO R I<E ' CSE 4404 /5327 Introduction to Machine Learning and Pattern Recognition
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Extension to Multiple Constraints

Suppose we wish to maximize f(x) subject to

gj(x):O forj=1,...,J
h (x)z0 fork=1,...,K

We then find the stationary points of

L(x,A)=f(x)+ Z;ngj(x)Jr 2 wh, (x)

subject to

h (x)=0
u 20
uh (x)=0
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- Back to our quadratic programming problem...



Quadratic Programming Problem

%arg min ||w||2 subjectto t. (wt(p (xn) + b) >1Vx_

w

Solve using Lagrange multipliers a_:

Lw.ba)= - 3-a, {1, (wo(x,)+b)-1)




Dual Representation

Solve using Lagrange multipliers a_:

Lwba)= 2w~ a1, (wio(x,)+£) -1

Setting derivatives with respect to w and b to 0, we get:

w=3atex,)

margin
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Dual Representation

L(w,b,a)= %Hw‘ ‘2— zN:an {tn (wt<p(xn) + b) — 1} w = iant,,fb(xn)

Substituting leads to the dual representation
of the maximum margin problem, in which we maximize:

L(a)= Za S Y aattk(x,x,)

n1m1

with respect to a, subject to:
a =20Vn

N
at =0

n=1

and where k(x,x’) = ¢(x) ¢(X")

J. Elder



Dual Representation

N
Using w = Zantngb(xn ), @ new point x is classified by computing
n=1

y(X)= zN: atk(x,x)+b

n=1

The Karush-Kuhn-Tucker (KKT) conditions for this constrained optimization problem are:

a 20

ty(x,)-120 y:—10
y:

an{tny(xn)—1}:0 y=1

Thus for every data point, eithera =0 ort y (xn) =1 \f .

support vectors
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Solving for the Bias

Once the optimal a is determined, the bias b can be computed
by noting that any support vector x  satisfies tny(xn) =1.

N
Using y(x)= > a t k(X,X_)+b
n=1

N
we have ¢ [Zamtmk(xn,xm)+ bj =1
m=1

N
andsob=t - > a t k(x ,X_)

m=1
A more numerically accurate solution can be obtained
by averaging over all support vectors:

b= NLZ(tn -y amtmk(xn,xm))

S neS meS
where S is the index set of support vectors and N, is the number of support vectors.
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Example (Gaussian Kernel)

Input Space

X

-
1
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Overlapping Class Distributions

The SVM for non-overlapping class distributions is determined
by solving

2, subject to t_ (wtq)(xn) + b) >1VX_

1arg minHw
2

w

Alternatively, this can be expressed as the minimization of

N
2. (y(x, )t, ~1)+ 2 wif
n=1

where E _(z) is 0 if z>0, and - otherwise.

This forces all points to lie on or outside the margins,
on the correct side for their class.

To allow for misclassified points, we have to relax this E_ term.
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Slack Variables

To this end, we introduce N slack variables { >0, n=1,...N.

¢ = 0 for points on or on the correct side of the margin boundary for their class

gn =

Thus ¢ <1 for points that are correctly classified

t —y (xn)‘ for all other points.

¢ >1for points that are incorrectly classified

We now minimize Ci c + %”w”2 , where C > 0. y=—1
n=1

subjectto t y(x )=1-¢, and £ >0, n=1...N

eé(=0
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Dual Representation

This leads to a dual representation, where we maximize

Za ——ZZanamtntmk(x X )

n1m1

with constralnts
O<a <C

and
N
at =0

n=1

YORKJ I

EEEEEEEEEE
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Support Vectors

Again, a new point x is classified by computing
N

y(x)=Y atk(x,x )+b
n=1

For points that are on the correct side of the margin, a = 0.

Thus support vectors consist of points between their margin and the decision boundary,
y=—1

as well as misclassified points.

In other words, all points that are not on
the right side of their margin are support vectors.
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Bias

Again, a new point x is classified by computing

N
y(x)=Y atk(x,x )+b
n=1

Once the optimal a is determined, the bias b can be computed from

b = Ni Z [tn B 2 amtmk(xn’xm)j

M neM meS
where

S is the index set of support vectors
N, is the number of support vectors

M is the index set of points on the margins
N,, is the number of points on the margins
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Solving the Quadratic Programming Problem

N N

N
Maximize L(a)= Y a - %2 aattk(x, x_)
n=1

n=1 m=1

N
subjectto0<a <Cand Y at =0
n=1

Problem is convex.
Standard solutions are generally O(N3).

Traditional quadratic programming techniques often infeasible
due to computation and memory requirements.

Instead, methods such as sequential minimal optimization can
be used, that in practice are found to scale as O(N) - O(N?).
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Chunking

Maximize L(a) = Za ——ZZanamtntmk(x X, )

n1m1

subjectto0<a_<C and Zantn =0

Conventional quadratic programming solution requires that
matrices with N? elements be maintained in memory.

K ~O(N?), where K =k(x,.X,,)
~O(N?), where T =tt

-
A~ O(Nz), where A =aa_

This becomes infeasible when N exceeds ~10,000.
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Chunking

Maximize L(a) = Za ——ZZanamtntmk(x X, )

n1m1

subjectto0<a_<C and Zantn =0

Chunking (Vapnik, 1982) exploits the fact that the
value of the Lagrangian is unchanged if we remove
the rows and columns of the kernel matrix where a_

=Qora, =0.
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Chunking

N
Minimize C) & + %HWHZ where C > 0.
n=1
¢ =0 for points on or on the correct side of the margin boundary for their class

én =

t —y (xn)‘ for all other points.
Chunking (Vapnik, 1982)

Select a small number (a ‘chunk’) of training vectors
Solve the QP problem for this subset

Retain only the support vectors

Consider another chunk of the training data

Ignore the subset of vectors in all chunks considered so far that lie on the correct side of
the margin, since these do not contribute to the cost function

Add the remainder to the current set of support vectors and solve the new QP problem

Return to Step 4
Repeat until the set of support vectors does not change.
This method reduces memory requirements to O(Né), where N, is the number of support vectors.

This may still be big!
YORK

UNIVERSITE
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Decomposition Methods

I VERS
I VERS

YORK

T
T

£
Y

It can be shown that the global QP problem is solved when, for all training vectors,
satisfy the following optimality conditions:

a,=0cty(x,)21.

O<a, <C<:>t,.y(x,.)=1.

a=C @t,.y(x,.)st

Decomposition methods decompose this large QP problem into a series of smaller
subproblems.
Decomposition (Osuna et al, 1997)

Partition the training data into a small working subset B and a fixed subset N.

Minimize the global objective function by adjusting the coefficients in B

Swap 1 or more vectors in B for an equal number in N that fail to satisfy the optimality
conditions

Re-solve the global QP problem for B
Each step is O(B)? in memory.

Osuna et al (1997) proved that the objective function decreases on each step and
will converge in a finite number of iterations.
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Sequential Minimal Optimization

Sequential Minimal Optimization (Platt 1998) takes
decomposition to the limit.

On each iteration, the working set consists of just
fwo vectors.

The advantage is that in this case, the QP problem
can be solved analytically.

Memory requirement are O(N).

Compute time is typically O(N) — O(N?).
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LIBSVM

LIBSVM is a widely used library for SYMs
developed by Chang & Lin (2001).

Can be downloaded from

MATLAB interface

Uses SMO
Will use for Assignment 2.
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- End of Lecture 14



LIBSVM Example: Face Detection

=N
"

u=0, o°=1

I

Preprocess:
Subsample &

Face

Normalize

svmftrain

Non-Face

>

Preprocess:
Subsample &

Normalize
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LIBSVM Example: MATLAB Interface
s

Selects linear SYM

model=svmtrain(traint, trainx, '-t 0');

[predicted_label, accuracy, decision_values] = sympredict(testt, testx, model);

Accuracy = 70.0212% (661 /944) (classification)
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Input Space

Example

J. Elder
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Relation to Logistic Regression

The objective function for the soft-margin SVM can be written as:

N 2
5 (0, 2w
where E, (z) = [1 — zl is the hinge error function,

and [z] =zifz=>0

+

=0 otherwise.

For t € {-1,1}, the objective function for a regularized version
of logistic regression can be written as: E(z)

N 2
S E0(r,0)+ 2w

where E, (z) =log (1 + exp(—z)).

—2 —1 0 1 2
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