LINEAR CLASSIFIERS

Classification: Problem Statement

- In regression, we are modeling the relationship between a continuous input variable x and a continuous target variable t.
- In classification, the input variable x may still be continuous, but the target variable is discrete.
- In the simplest case, t can have only 2 values.

e.g., Let
$$t = +1$$
 assigned to C_1 assigned to C_2

Example Problem

Probability & Bayesian Inference

Animal or Vegetable?

Linear Models for Classification

Probability & Bayesian Inference

- Linear models for classification separate input vectors into classes using linear (hyperplane) decision boundaries.
 - Example:

2D Input vector **x**

Two discrete classes C_1 and C_2

Two Class Discriminant Function

Probability & Bayesian Inference

 $y(\mathbf{x}) \ge 0 \to \mathbf{x}$ assigned to C_1

 $y(\mathbf{x}) < 0 \rightarrow \mathbf{x}$ assigned to C_2

Thus y(x) = 0 defines the decision boundary

Two-Class Discriminant Function

Probability & Bayesian Inference

$$y(\mathbf{x}) = \mathbf{w}^t \mathbf{x} + \mathbf{w}_0$$

$$y(\mathbf{x}) \ge 0 \rightarrow \mathbf{x}$$
 assigned to C_1

$$y(\mathbf{x}) < 0 \rightarrow \mathbf{x}$$
 assigned to C_2

For convenience, let

$$\mathbf{w} = \begin{bmatrix} \mathbf{w}_1 \dots \mathbf{w}_M \end{bmatrix}^t \Rightarrow \begin{bmatrix} \mathbf{w}_0 & \mathbf{w}_1 \dots \mathbf{w}_M \end{bmatrix}^t$$

and

$$\mathbf{x} = \begin{bmatrix} \mathbf{x}_1 \dots \mathbf{x}_M \end{bmatrix}^T \Rightarrow \begin{bmatrix} 1 \ \mathbf{x}_1 \dots \mathbf{x}_M \end{bmatrix}^T$$

So we can express $y(\mathbf{x}) = \mathbf{w}^t \mathbf{x}$

Generalized Linear Models

- For classification problems, we want y to be a predictor of t. In other words, we wish to map the input vector into one of a number of discrete classes, or to posterior probabilities that lie between 0 and 1.
- □ For this purpose, it is useful to elaborate the linear model by introducing a nonlinear activation function f, which typically will constrain y to lie between -1 and 1 or between 0 and 1.

$$y(\mathbf{x}) = f(\mathbf{w}^t \mathbf{x} + \mathbf{w}_0)$$

Log-sigmoid function

Tan-sigmoid function

Linear function

The Perceptron

$$y(\mathbf{x}) = f(\mathbf{w}^t \mathbf{x} + \mathbf{w}_0)$$
 $y(\mathbf{x}) \ge 0 \to \mathbf{x}$ assigned to C_1
 $y(\mathbf{x}) < 0 \to \mathbf{x}$ assigned to C_2

- A classifier based upon this simple generalized linear model is called a (single layer) perceptron.
- It can also be identified with an abstracted model of a neuron called the McCulloch Pitts model.

Parameter Learning

Probability & Bayesian Inference

How do we learn the parameters of a perceptron?

Outline

- □ The Perceptron Algorithm
- Least-Squares Classifiers
- Fisher's Linear Discriminant
- Logistic Classifiers
- Support Vector Machines

Case 1. Linearly Separable Inputs

- For starters, let's assume that the training data is in fact perfectly linearly separable.
- In other words, there exists at least one hyperplane (one set of weights) that yields 0 classification error.
- □ We seek an algorithm that can automatically find such a hyperplane. $↑_{x_a}$

- The perceptron algorithm was invented by Frank Rosenblatt (1962).
- The algorithm is iterative.
- The strategy is to start with a random guess at the weights w, and to then iteratively change the weights to move the hyperplane in a direction that lowers the classification error.

Frank Rosenblatt (1928 – 1971)

- Note that as we change the weights continuously, the classification error changes in discontinuous, piecewise constant fashion.
- Thus we cannot use the classification error per se as our objective function to minimize.
- What would be a better objective function?

The Perceptron Criterion

Probability & Bayesian Inference

Note that we seek w such that

$$\mathbf{w}^{t}\mathbf{x} \ge 0$$
 when $t = +1$
 $\mathbf{w}^{t}\mathbf{x} < 0$ when $t = -1$

In other words, we would like

$$\mathbf{w}^t \mathbf{x}_n t_n \ge 0 \ \forall n$$

Thus we seek to minimize

$$E_P(\mathbf{w}) = -\sum_{n \in \mathcal{M}} \mathbf{w}^t \mathbf{x}_n t_n$$

where ${\mathcal M}$ is the set of misclassified inputs.

The Perceptron Criterion

Probability & Bayesian Inference

$$E_{P}(\mathbf{w}) = -\sum_{n \in \mathcal{M}} \mathbf{w}^{t} \mathbf{x}_{n} t_{n}$$

where ${\mathcal M}$ is the set of misclassified inputs.

- Observations:
 - \square $E_P(\mathbf{w})$ is always non-negative.
 - \blacksquare $E_P(\mathbf{w})$ is continuous and piecewise linear, and thus easier to minimize.

Probability & Bayesian Inference

$$E_P(\mathbf{w}) = -\sum_{n \in \mathcal{M}} \mathbf{w}^t \mathbf{x}_n t_n$$

where ${\mathcal M}$ is the set of misclassified inputs.

$$\frac{dE_{P}(\mathbf{w})}{d\mathbf{w}} = -\sum_{n \in \mathcal{M}} \mathbf{x}_{n} t_{n}$$

where the derivative exists.

Gradient descent:

$$\mathbf{w}^{\tau+1} = \mathbf{w}^{\tau} - \eta \nabla E_{P}(\mathbf{w}) = \mathbf{w}^{\tau} + \eta \sum_{n \in \mathcal{M}} \mathbf{x}_{n} t_{n}$$

$$\mathbf{w}^{\tau+1} = \mathbf{w}^{\tau} - \eta \nabla E_{P}(\mathbf{w}) = \mathbf{w}^{t} + \eta \sum_{n \in \mathcal{M}} \mathbf{x}_{n} t_{n}$$

- Why does this make sense?
 - □ If an input from $C_1(t = +1)$ is misclassified, we need to make its projection on **w** more positive.
 - If an input from C_2 (t = -1) is misclassified, we need to make its projection on \mathbf{w} more negative.

- The algorithm can be implemented sequentially:
 - Repeat until convergence:
 - For each input (\mathbf{x}_n, t_n) :
 - If it is correctly classified, do nothing
 - If it is misclassified, update the weight vector to be $\mathbf{w}^{\tau+1} = \mathbf{w}^{\tau} + \eta \mathbf{x}_n t_n$
 - Note that this will lower the contribution of input n to the objective function:

$$-\left(\mathbf{w}^{(\tau)}\right)^{t}\mathbf{x}_{n}t_{n} \rightarrow -\left(\mathbf{w}^{(\tau+1)}\right)^{t}\mathbf{x}_{n}t_{n} = -\left(\mathbf{w}^{(\tau)}\right)^{t}\mathbf{x}_{n}t_{n} - \eta\left(\mathbf{x}_{n}t_{n}\right)^{t}\mathbf{x}_{n}t_{n} < -\left(\mathbf{w}^{(\tau)}\right)^{t}\mathbf{x}_{n}t_{n}.$$

Not Monotonic

- While updating with respect to a misclassified input n will lower the error for that input, the error for other misclassified inputs may increase.
- Also, new inputs that had been classified correctly may now be misclassified.
- The result is that the perceptron algorithm is not guaranteed to reduce the total error monotonically at each stage.

The Perceptron Convergence Theorem

Probability & Bayesian Inference

Despite this non-monotonicity, if in fact the data are linearly separable, then the algorithm is guaranteed to find an exact solution in a finite number of steps (Rosenblatt, 1962).

Example

The First Learning Machine

Probability & Bayesian Inference

■ Mark 1 Perceptron Hardware (c. 1960)

Visual Inputs

Patch board allowing configuration of inputs ϕ

Rack of adaptive weights **w** (motor-driven potentiometers)

Practical Limitations

- The Perceptron Convergence Theorem is an important result. However, there are practical limitations:
 - Convergence may be slow
 - If the data are not separable, the algorithm will not converge.
 - We will only know that the data are separable once the algorithm converges.
 - \blacksquare The solution is in general not unique, and will depend upon initialization, scheduling of input vectors, and the learning rate η .

Generalization to inputs that are not linearly separable.

Probability & Bayesian Inference

The single-layer perceptron can be generalized to yield good linear solutions to problems that are not linearly separable.

- Example: The Pocket Algorithm (Gal 1990)
 - □ Idea:
 - Run the perceptron algorithm
 - Keep track of the weight vector w* that has produced the best classification error achieved so far.
 - It can be shown that \mathbf{w}^* will converge to an optimal solution with probability 1.

Generalization to Multiclass Problems

Probability & Bayesian Inference

□ How can we use perceptrons, or linear classifiers in general, to classify inputs when there are K > 2 classes?

K>2 Classes

- □ Idea #1: Just use K-I discriminant functions, each of which separates one class C_k from the rest. (Oneversus-the-rest classifier.)
- Problem: Ambiguous regions

K>2 Classes

- □ Idea #2: Use K(K-1)/2 discriminant functions, each of which separates two classes C_i , C_k from each other. (One-versus-one classifier.)
- Each point classified by majority vote.
- □ Problem: Ambiguous regions

K>2 Classes

Probability & Bayesian Inference

- □ Idea #3: Use K discriminant functions $y_k(x)$
- \square Use the **magnitude** of $y_k(x)$, not just the sign.

$$y_k(\mathbf{x}) = \mathbf{w}_k^t \mathbf{x}$$

x assigned to C_k if $y_k(\mathbf{x}) > y_j(\mathbf{x}) \forall j \neq k$

Decision boundary
$$y_k(\mathbf{x}) = y_j(\mathbf{x}) \rightarrow (w_k - w_j)^t x + (w_{k0} - w_{j0}) = 0$$

Results in decision regions that are simply-connected and convex.

Example: Kesler's Construction

- The perceptron algorithm can be generalized to Kclass classification problems.
- Example:
 - Kesler's Construction:
 - Allows use of the perceptron algorithm to simultaneously learn K separate weight vectors \mathbf{w}_i .
 - Inputs are then classified in Class *i* if and only if $\mathbf{w}_{i}^{t}\mathbf{x} > \mathbf{w}_{i}^{t}\mathbf{x} \quad \forall j \neq i$
 - The algorithm will converge to an optimal solution if a solution exists, i.e., if all training vectors can be correctly classified according to this rule.

1-of-K Coding Scheme

Probability & Bayesian Inference

Element i

□ When there are K>2 classes, target variables can be coded using the 1-of-K coding scheme:

Input from Class
$$C_i \Leftrightarrow t = [0 \ 0 \ ... 1... 0 \ 0]^t$$

Computational Limitations of Perceptrons

- Initially, the perceptron was thought to be a potentially powerful learning machine that could model human neural processing.
- However, Minsky & Papert
 (1969) showed that the single-layer perceptron could not learn a simple XOR function.
- This is just one example of a non-linearly separable pattern that cannot be learned by a single-layer perceptron.

Marvin Minsky (1927 -)

Multi-Layer Perceptrons

- Minsky & Papert's book was widely misinterpreted as showing that artificial neural networks were inherently limited.
- This contributed to a decline in the reputation of neural network research through the 70s and 80s.
- However, their findings apply only to single-layer perceptrons. Multilayer perceptrons are capable of learning highly nonlinear functions, and are used in many practical applications.

End of Lecture 11

Outline

- The Perceptron Algorithm
- Least-Squares Classifiers
- Fisher's Linear Discriminant
- Logistic Classifiers
- Support Vector Machines

Dealing with Non-Linearly Separable Inputs

- The perceptron algorithm fails when the training data are not perfectly linearly separable.
- Let's now turn to methods for learning the parameter vector **w** of a perceptron (linear classifier) even when the training data are not linearly separable.

The Least Squares Method

- □ In the least squares method, we simply fit the (x, t) observations with a hyperplane y(x).
- □ Note that this is kind of a weird idea, since the t values are binary (when K=2), e.g., 0 or 1.
- However it can work pretty well.

Least Squares: Learning the Parameters

Probability & Bayesian Inference

Assume D – dimensional input vectors \mathbf{x} .

For each class $k \in 1...K$:

$$y_{k}(\mathbf{x}) = \mathbf{w}_{k}^{t} \mathbf{x} + w_{k0}$$

$$\rightarrow \mathbf{y}(\mathbf{x}) = \tilde{\mathbf{W}}^t \tilde{\mathbf{x}}$$

where

$$\tilde{\mathbf{x}} = (1, \mathbf{x}^t)^t$$

 $\tilde{\mathbf{W}}$ is a $(D+1)\times K$ matrix whose kth column is $\tilde{\mathbf{w}}_{k} = (w_{0}, \mathbf{w}_{k}^{t})^{t}$

Learning the Parameters

Probability & Bayesian Inference

■ Method #2: Least Squares

$$\mathbf{y}(\mathbf{x}) = \tilde{\mathbf{W}}^t \tilde{\mathbf{x}}$$

Training dataset
$$(\mathbf{x}_n, \mathbf{t}_n)$$
, $n = 1, ..., N$

where we use the 1-of-K coding scheme for \mathbf{t}_n

Let **T** be the $N \times K$ matrix whose n^{th} row is \mathbf{t}_n^t

Let $\tilde{\mathbf{X}}$ be the $N \times (D+1)$ matrix whose n^{th} row is $\tilde{\mathbf{x}}_n^t$

Let
$$R_D(\tilde{\mathbf{W}}) = \tilde{\mathbf{X}}\tilde{\mathbf{W}} - \mathbf{T}$$

Then we define the error as
$$E_D(\tilde{\mathbf{W}}) = \frac{1}{2} \sum_{i,j} R_{ij}^2 = \frac{1}{2} \operatorname{Tr} \left\{ R_D(\tilde{\mathbf{W}})^t R_D(\tilde{\mathbf{W}}) \right\}$$

Setting derivative wrt $\tilde{\mathbf{W}}$ to 0 yields:

$$\tilde{\mathbf{W}} = \left(\tilde{\mathbf{X}}^t \tilde{\mathbf{X}}\right)^{-1} \tilde{\mathbf{X}}^t \mathbf{T} = \tilde{\mathbf{X}}^{\dagger} \mathbf{T}$$

Outline

- The Perceptron Algorithm
- Least-Squares Classifiers
- □ Fisher's Linear Discriminant
- Logistic Classifiers
- Support Vector Machines

Fisher's Linear Discriminant

Probability & Bayesian Inference

Another way to view linear discriminants: find the 1D subspace that maximizes the separation between the two classes.

Let
$$\mathbf{m}_{1} = \frac{1}{N_{1}} \sum_{n \in C_{1}} \mathbf{x}_{n}$$
, $\mathbf{m}_{2} = \frac{1}{N_{2}} \sum_{n \in C_{2}} \mathbf{x}_{n}$

For example, might choose **w** to maximize $\mathbf{w}^t (\mathbf{m}_2 - \mathbf{m}_1)$, subject to $\|\mathbf{w}\| = 1$

This leads to $\mathbf{w} \propto \mathbf{m}_2 - \mathbf{m}_1$

However, if conditional distributions are not isotropic, this is typically not optimal.

Fisher's Linear Discriminant

Probability & Bayesian Inference

Let $m_1 = \mathbf{w}^t \mathbf{m}_1$, $m_2 = \mathbf{w}^t \mathbf{m}_2$ be the conditional means on the 1D subspace.

Let $s_k^2 = \sum_{n \in C_k} (y_n - m_k)^2$ be the within-class variance on the subspace for class C_k

The Fisher criterion is then
$$J(\mathbf{w}) = \frac{\left(m_2 - m_1\right)^2}{s_1^2 + s_2^2}$$

This can be rewritten as

$$J(\mathbf{w}) = \frac{\mathbf{w}^t \mathbf{S}_{\scriptscriptstyle B} \mathbf{w}}{\mathbf{w}^t \mathbf{S}_{\scriptscriptstyle W} \mathbf{w}}$$

where

$$\mathbf{S}_{B} = (\mathbf{m}_{2} - \mathbf{m}_{1})(\mathbf{m}_{2} - \mathbf{m}_{1})^{t}$$
 is the between-class variance and

$$J(\mathbf{w})$$
 is maximized for $\mathbf{w} \propto \mathbf{S}_{W}^{-1} (\mathbf{m}_{2} - \mathbf{m}_{1})$

Connection between Least-Squares and FLD

Probability & Bayesian Inference

Change coding scheme used in least-squares method to

$$t_n = \frac{N}{N_1}$$
 for C_1

$$t_n = -\frac{N}{N_2}$$
 for C_2

Then one can show that the ML w satisfies

$$\mathbf{w} \propto \mathbf{S}_{W}^{-1} \left(\mathbf{m}_{2} - \mathbf{m}_{1} \right)$$

Least Squares Classifier

Probability & Bayesian Inference

□ Problem #1: Sensitivity to outliers

 Problem #2: Linear activation function is not a good fit to binary data. This can lead to problems.

Outline

- The Perceptron Algorithm
- Least-Squares Classifiers
- Fisher's Linear Discriminant
- Logistic Classifiers
- Support Vector Machines

Logistic Regression (K = 2)

Probability & Bayesian Inference

$$\rho(C_1 | \phi) = y(\phi) = \sigma(\mathbf{w}^t \phi)$$
$$\rho(C_2 | \phi) = 1 - \rho(C_1 | \phi)$$

where
$$\sigma(a) = \frac{1}{1 + \exp(-a)}$$

$$\rho(C_1 | \phi) = y(\phi) = \sigma(\mathbf{w}^t \phi)$$

 x_1

Logistic Regression

$$\rho(C_1 | \phi) = y(\phi) = \sigma(\mathbf{w}^t \phi)$$
$$\rho(C_2 | \phi) = 1 - \rho(C_1 | \phi)$$

where

$$\sigma(a) = \frac{1}{1 + \exp(-a)}$$

- Number of parameters
 - Logistic regression: M
 - Gaussian model: $2M + 2M(M+1)/2 + 1 = M^2 + 3M + 1$

ML for Logistic Regression

Probability & Bayesian Inference

$$p(\mathbf{t} \mid \mathbf{w}) = \prod_{n=1}^{N} y_n^{t_n} \left\{ 1 - y_n \right\}^{1 - t_n} \quad \text{where } \mathbf{t} = \left(t_1, \dots, t_N \right)^t \text{ and } y_n = p\left(C_1 \mid \phi_n \right)$$

We define the error function to be $E(\mathbf{w}) = -\log p(\mathbf{t} \mid \mathbf{w})$

Given $y_n = \sigma(a_n)$ and $a_n = \mathbf{w}^t \phi_n$, one can show that

$$\nabla E(\mathbf{w}) = \sum_{n=1}^{N} (y_n - t_n) \phi_n$$

Unfortunately, there is no closed form solution for w.

End of Lecture 12

ML for Logistic Regression:

Probability & Bayesian Inference

- □ Iterative Reweighted Least Squares
 - Although there is no closed form solution for the ML estimate of w, fortunately, the error function is convex.
 - Thus an appropriate iterative method is guaranteed to find the exact solution.
 - A good method is to use a local quadratic approximation to the log likelihood function (Newton-Raphson update):

$$\mathbf{w}^{(new)} = \mathbf{w}^{(old)} - \mathbf{H}^{-1} \nabla E(\mathbf{w})$$

where **H** is the Hessian matrix of $E(\mathbf{w})$

ML for Logistic Regression

Probability & Bayesian Inference

$$\mathbf{w}^{(new)} = \mathbf{w}^{(old)} - \mathbf{H}^{-1} \nabla E(\mathbf{w})$$

where **H** is the Hessian matrix of $E(\mathbf{w})$:

$$\mathbf{H} = \mathbf{\Phi}^t \mathbf{R} \mathbf{\Phi}$$

where **R** is the $N \times N$ diagonal weight matrix with $R_{nn} = y_n (1 - y_n)$

(Note that, since $\mathbf{R}_{nn} \ge 0$, \mathbf{R} is positive semi-definite, and hence \mathbf{H} is positive semi-definite Thus $E(\mathbf{w})$ is convex.)

Thus

$$\mathbf{w}^{new} = \mathbf{w}^{(old)} - \left(\Phi^t \mathbf{R} \Phi\right)^{-1} \Phi^t \left(\mathbf{y} - \mathbf{t}\right)$$

ML for Logistic Regression

Probability & Bayesian Inference

Iterative Reweighted Least Squares

53

Logistic Regression

 \square For K>2, we can generalize the activation function by modeling the posterior probabilities as

Probability & Bayesian Inference

$$\rho(C_k | \phi) = y_k(\phi) = \frac{\exp(a_k)}{\sum_j \exp(a_j)}$$

where the activations a_{k} are given by

$$a_k = \mathbf{w}_k^t \phi$$

Example

Least-Squares

Logistic

Outline

- The Perceptron Algorithm
- Least-Squares Classifiers
- Fisher's Linear Discriminant
- Logistic Classifiers
- Support Vector Machines

- The perceptron algorithm is guaranteed to provide a linear decision surface that separates the training data, if one exists.
- However, if the data are linearly separable, there are in general an infinite number of solutions, and the solution returned by the perceptron algorithm depends in a complex way on the initial conditions, the learning rate and the order in which training data are processed.
- While all solutions achieve a perfect score on the training data, they won't all necessarily generalize as well to new inputs.

Which solution would you choose?

Probability & Bayesian Inference

The Large Margin Classifier

Probability & Bayesian Inference

- Unlike the Perceptron Algorithm, Support Vector Machines solve a problem that has a unique solution: they return the linear classifier with the maximum margin, that is, the hyperplane that separates the data and is farthest from any of the training vectors.
- Why is this good?

Support Vector Machines

Probability & Bayesian Inference

SVMs are based on the linear model $y(\mathbf{x}) = \mathbf{w}^t \phi(\mathbf{x}) + b$

Assume training data $\mathbf{x}_1, \dots, \mathbf{x}_N$ with corresponding target values $t_1, \dots, t_N, t_n \in \{-1,1\}.$

x classified according to sign of $y(\mathbf{x})$.

Assume for the moment that the training data are linearly separable in feature space.

Then
$$\exists \mathbf{w}, b : t_n y(\mathbf{x}_n) > 0 \ \forall n \in [1, ...N]$$

Maximum Margin Classifiers

Probability & Bayesian Inference

- When the training data are linearly separable, there are generally an infinite number of solutions for (\mathbf{w}, b) that separate the classes exactly.
- The margin of such a classifier is defined as the orthogonal distance in feature space between the decision boundary and the closest training vector.
- SVMs are an example of a **maximum margin classifer**, which finds the linear classifier that maximizes the margin.

Probabilistic Motivation

Probability & Bayesian Inference

The maximum margin classifier has a probabilistic motivation.

If we model the class-conditional densities with a KDE using Gaussian kernels with variance σ^2 , then in the limit as $\sigma \to 0$, the optimal linear decision boundary \to maximum margin linear classifier.

Two Class Discriminant Function

Probability & Bayesian Inference

Recall:

$$y(\mathbf{x}) = \mathbf{w}^t \mathbf{x} + \mathbf{w}_0$$

 $y(\mathbf{x}) \ge 0 \rightarrow \mathbf{x}$ assigned to C_1

 $y(\mathbf{x}) < 0 \rightarrow \mathbf{x}$ assigned to C_2

Thus $y(\mathbf{x}) = 0$ defines the decision boundary

Maximum Margin Classifiers

Probability & Bayesian Inference

Distance of point \mathbf{x}_a from decision surface is given by:

$$\frac{t_n y(\mathbf{x}_n)}{\|\mathbf{w}\|} = \frac{t_n(\mathbf{w}^t \phi(\mathbf{x}_n) + b)}{\|\mathbf{w}\|}$$

Thus we seek:

$$\underset{\mathbf{w},b}{\operatorname{argmax}} \left\{ \frac{1}{\|\mathbf{w}\|} \min_{n} \left[t_{n} \left(\mathbf{w}^{t} \phi \left(\mathbf{x}_{n} \right) + b \right) \right] \right\}$$

Maximum Margin Classifiers

Probability & Bayesian Inference

Distance of point \mathbf{x}_n from decision surface is given by:

$$\frac{t_{n}y\left(\mathbf{x}_{n}\right)}{\left\|\mathbf{w}\right\|} = \frac{t_{n}\left(\mathbf{w}^{t}\phi\left(\mathbf{x}_{n}\right) + b\right)}{\left\|\mathbf{w}\right\|}$$

Note that rescaling **w** and b by the same factor leaves the distance to the decision surface unchanged.

Thus, wlog, we consider only solutions that satisfy:

$$t_n\left(\mathbf{w}^t\phi\left(\mathbf{x}_n\right)+b\right)=1.$$

for the point \mathbf{x}_n that is closest to the decision surface.

Quadratic Programming Problem

Probability & Bayesian Inference

Then all points \mathbf{x}_n satisfy $t_n \left(\mathbf{w}^t \phi \left(\mathbf{x}_n \right) + b \right) \ge 1$

Points for which equality holds are said to be active.

All other points are **inactive**.

Now
$$\underset{\mathbf{w},b}{\operatorname{argmax}} \left\{ \frac{1}{\|\mathbf{w}\|} \min_{n} \left[t_{n} \left(\mathbf{w}^{t} \phi \left(\mathbf{x}_{n} \right) + b \right) \right] \right\}$$

$$\leftrightarrow \frac{1}{2} \underset{\mathbf{w}}{\operatorname{argmin}} \|\mathbf{w}\|^{2}$$

Subject to $t_n \left(\mathbf{w}^t \phi \left(\mathbf{x}_n \right) + b \right) \ge 1 \ \forall \mathbf{x}_n$

This is a quadratic programming problem.

Solving this problem will involve Lagrange multipliers.

Lagrange Multipliers

Lagrange Multipliers (Appendix C.4 in textbook)

Probability & Bayesian Inference

- Used to find stationary points of a function subject to one or more constraints.
- Example (equality constraint): Maximize $f(\mathbf{x})$ subject to $g(\mathbf{x}) = 0$.

Observations:

Joseph-Louis Lagrange 1736-1813

- 1. At any point on the constraint surface, $\nabla g(\mathbf{x})$ must be orthogonal to the surface.
- 2. Let \mathbf{x}^* be a point on the constraint surface where $f(\mathbf{x})$ is maximized. Then $\nabla f(\mathbf{x})$ is also orthogonal to the constraint surface.
- 3. $\rightarrow \exists \lambda \neq 0$ such that $\nabla f(\mathbf{x}) + \lambda \nabla g(\mathbf{x}) = 0$ at \mathbf{x}^* . λ is called a **Lagrange multiplier**.

Lagrange Multipliers (Appendix C.4 in textbook)

Probability & Bayesian Inference

 $\exists \lambda \neq 0$ such that $\nabla f(\mathbf{x}) + \lambda \nabla g(\mathbf{x}) = 0$ at \mathbf{x}^* .

Defining the Lagrangian function as:

$$L(\mathbf{x},\lambda) = f(\mathbf{x}) + \lambda g(\mathbf{x})$$

we then have

$$\nabla_{\mathbf{x}} L(\mathbf{x}, \lambda) = 0.$$

and

$$\frac{\partial L(\mathbf{x},\lambda)}{\partial \lambda} = 0.$$

Example

$$L(\mathbf{x},\lambda) = f(\mathbf{x}) + \lambda g(\mathbf{x})$$

□ Find the stationary point of

$$f(x_1, x_2) = 1 - x_1^2 - x_2^2$$

subject to

$$g(x_1, x_2) = x_1 + x_2 - 1 = 0$$

End of Lecture 13

Inequality Constraints

Probability & Bayesian Inference

Maximize $f(\mathbf{x})$ subject to $g(\mathbf{x}) \ge 0$.

- There are 2 cases:
 - 1. \mathbf{x}^* on the interior (e.g., \mathbf{x}_B)
 - Here g(x) > 0 and the stationary condition is simply $\nabla f(\mathbf{x}) = 0$.
 - This corresponds to a stationary point of the Lagrangian where $\lambda=0$.

Here
$$g(x) = 0$$
 and the stationary condition is $\nabla f(\mathbf{x}) = -\lambda \nabla g(x), \ \lambda > 0.$

- This corresponds to a stationary point of the Lagrangian where $\lambda > 0$.
- Thus the general problem can be expressed as maximizing the Lagrangian subject to 1. $g(x) \ge 0$ 2. $\lambda \ge 0$

2.
$$\lambda \ge 0$$

3. $\lambda g(x) = 0$

$$L(\mathbf{x},\lambda) = f(\mathbf{x}) + \lambda g(\mathbf{x})$$

Karush-Kuhn-Tucker (KKT) conditions

Minimizing vs Maximizing

Probability & Bayesian Inference

□ If we want to minimize f(x) subject to $g(x) \ge 0$, then the Lagrangian becomes

$$L(\mathbf{x},\lambda) = f(\mathbf{x}) - \lambda g(\mathbf{x})$$

with $\lambda \geq 0$.

Extension to Multiple Constraints

Probability & Bayesian Inference

 \square Suppose we wish to maximize f(x) subject to

$$g_{j}(\mathbf{x}) = 0 \text{ for } j = 1,...,J$$

 $h_{k}(\mathbf{x}) \ge 0 \text{ for } k = 1,...,K$

We then find the stationary points of

$$L(\mathbf{x},\lambda) = f(\mathbf{x}) + \sum_{j=1}^{J} \lambda_{j} g_{j}(\mathbf{x}) + \sum_{k=1}^{K} \mu_{k} h_{k}(\mathbf{x})$$

subject to

$$h_k(\mathbf{x}) \ge 0$$

$$\mu_k \ge 0$$

$$\mu_k h_k(\mathbf{x}) = 0$$

Quadratic Programming Problem

Probability & Bayesian Inference

$$\frac{1}{2} \underset{\mathbf{w}}{\operatorname{arg min}} \|\mathbf{w}\|^{2}, \text{ subject to } t_{n} \left(\mathbf{w}^{t} \phi\left(\mathbf{x}_{n}\right) + b\right) \ge 1 \ \forall \mathbf{x}_{n}$$

Solve using Lagrange multipliers a_n :

$$L(\mathbf{w},b,\mathbf{a}) = \frac{1}{2} ||\mathbf{w}||^2 - \sum_{n=1}^{N} a_n \left\{ t_n \left(\mathbf{w}^t \phi \left(\mathbf{x}_n \right) + b \right) - 1 \right\}$$

Dual Representation

Solve using Lagrange multipliers a_n :

$$L(\mathbf{w},b,\mathbf{a}) = \frac{1}{2} ||\mathbf{w}||^2 - \sum_{n=1}^{N} a_n \left\{ t_n \left(\mathbf{w}^t \phi \left(\mathbf{x}_n \right) + b \right) - 1 \right\}$$

Setting derivatives with respect to **w** and b to 0, we get:

$$\mathbf{w} = \sum_{n=1}^{N} a_n t_n \phi(\mathbf{x}_n)$$

$$\sum_{n=1}^{N} a_n t_n = 0$$

Dual Representation

Probability & Bayesian Inference

$$L(\mathbf{w},b,\mathbf{a}) = \frac{1}{2} ||\mathbf{w}||^2 - \sum_{n=1}^{N} a_n \left\{ t_n \left(\mathbf{w}^t \phi \left(\mathbf{x}_n \right) + b \right) - 1 \right\} \qquad \mathbf{w} = \sum_{n=1}^{N} a_n t_n \phi(\mathbf{x}_n)$$

$$\sum_{n=1}^{N} a_n t_n = 0$$

Substituting leads to the dual representation of the maximum margin problem, in which we maximize:

$$\tilde{L}(\mathbf{a}) = \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m k(\mathbf{x}_n, \mathbf{x}_m)$$

with respect to a, subject to:

$$a_n \ge 0 \ \forall n$$

$$\sum_{n=1}^{N} a_n t_n = 0$$

and where $k(\mathbf{x}, \mathbf{x'}) = \phi(\mathbf{x})^t \phi(\mathbf{x'})$

Dual Representation

Using $\mathbf{w} = \sum_{n=1}^{N} a_n t_n \phi(\mathbf{x}_n)$, a new point x is classified by computing

$$y(\mathbf{x}) = \sum_{n=1}^{N} a_n t_n k(\mathbf{x}, \mathbf{x}_n) + b$$

The Karush-Kuhn-Tucker (KKT) conditions for this constrained optimization problem are:

$$a_n \ge 0$$

$$t_n y(\mathbf{x}_n) - 1 \ge 0$$

$$a_n \left\{ t_n y \left(\mathbf{x}_n \right) - 1 \right\} = 0$$

Thus for every data point, either $a_n = 0$ or $t_n y(\mathbf{x}_n) = 1$.

79

Solving for the Bias

Once the optimal **a** is determined, the bias b can be computed by noting that any support vector \mathbf{x}_n satisfies $\mathbf{t}_n y(\mathbf{x}_n) = 1$.

Using
$$y(\mathbf{x}) = \sum_{n=1}^{N} a_n t_n k(\mathbf{x}, \mathbf{x}_n) + b$$

we have $t_n \left(\sum_{m=1}^{N} a_m t_m k(\mathbf{x}_n, \mathbf{x}_m) + b \right) = 1$
and so $b = t_n - \sum_{m=1}^{N} a_m t_m k(\mathbf{x}_n, \mathbf{x}_m)$

A more numerically accurate solution can be obtained by averaging over all support vectors:

$$b = \frac{1}{N_S} \sum_{n \in S} \left(t_n - \sum_{m \in S} a_m t_m k(\mathbf{x}_n, \mathbf{x}_m) \right)$$

where S is the index set of support vectors and N_S is the number of support vectors.

Example (Gaussian Kernel)

Overlapping Class Distributions

Probability & Bayesian Inference

 The SVM for non-overlapping class distributions is determined by solving

$$\frac{1}{2} \underset{\mathbf{w}}{\operatorname{arg min}} \|\mathbf{w}\|^{2}, \text{ subject to } t_{n} \left(\mathbf{w}^{t} \phi\left(\mathbf{x}_{n}\right) + b\right) \geq 1 \ \forall \mathbf{x}_{n}$$

Alternatively, this can be expressed as the minimization of

$$\sum_{n=1}^{N} E_{\infty} (y(\mathbf{x}_n)t_n - 1) + \lambda ||\mathbf{w}||^2$$

where $E_{\infty}(z)$ is 0 if $z \ge 0$, and ∞ otherwise.

This forces all points to lie on or outside the margins, on the correct side for their class.

To allow for misclassified points, we have to relax this E_{∞} term.

Slack Variables

Probability & Bayesian Inference

To this end, we introduce *N* slack variables $\xi_n \ge 0$, n = 1,...N.

 $\xi_n = 0$ for points on or on the correct side of the margin boundary for their class

 $\xi_n = |t_n - y(\mathbf{x}_n)|$ for all other points.

Thus ξ_n < 1 for points that are correctly classified ξ_n > 1 for points that are incorrectly classified

We now minimize $C\sum_{n=1}^{N} \xi_n + \frac{1}{2} \|\mathbf{w}\|^2$, where C > 0. subject to $t_n y(\mathbf{x}_n) \ge 1 - \xi_n$, and $\xi_n \ge 0$, n = 1,...N

Probability & Bayesian Inference

This leads to a dual representation, where we maximize

$$\tilde{L}(\mathbf{a}) = \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m k(\mathbf{x}_n, \mathbf{x}_n)$$

Dual Representation

with constraints

$$0 \le a_n \le C$$

and

$$\sum_{n=1}^{N} a_n t_n = 0$$

Support Vectors

Probability & Bayesian Inference

Again, a new point **x** is classified by computing

$$y(\mathbf{x}) = \sum_{n=1}^{N} a_n t_n k(\mathbf{x}, \mathbf{x}_n) + b$$

For points that are on the correct side of the margin, $a_n = 0$.

Thus support vectors consist of points between their margin and the decision boundary, as well as misclassified points. y = -1

In other words, all points that are not on the right side of their margin are support vectors.

Bias

Again, a new point **x** is classified by computing

$$y(\mathbf{x}) = \sum_{n=1}^{N} a_n t_n k(\mathbf{x}, \mathbf{x}_n) + b$$

Once the optimal **a** is determined, the bias *b* can be computed from

$$b = \frac{1}{N_{M}} \sum_{n \in M} \left(t_{n} - \sum_{m \in S} a_{m} t_{m} k(\mathbf{x}_{n}, \mathbf{x}_{m}) \right)$$

where

S is the index set of support vectors N_s is the number of support vectors

M is the index set of points on the margins

 $N_{\rm M}$ is the number of points on the margins

Solving the Quadratic Programming Problem

Maximize
$$\tilde{L}(\mathbf{a}) = \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m k(\mathbf{x}_n, \mathbf{x}_m)$$

subject to $0 \le a_n \le C$ and $\sum_{n=1}^{N} a_n t_n = 0$

- Problem is convex.
- □ Standard solutions are generally $O(N^3)$.
- Traditional quadratic programming techniques often infeasible due to computation and memory requirements.
- Instead, methods such as **sequential minimal optimization** can be used, that in practice are found to scale as O(N) $O(N^2)$.

Chunking

Probability & Bayesian Inference

Maximize
$$\tilde{L}(\mathbf{a}) = \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m k(\mathbf{x}_n, \mathbf{x}_m)$$

subject to $0 \le a_n \le C$ and $\sum_{n=1}^{N} a_n t_n = 0$

Conventional quadratic programming solution requires that matrices with N^2 elements be maintained in memory.

$$K \sim O(N^2)$$
, where $K_{nm} = k(\mathbf{x}_n, \mathbf{x}_m)$

$$T \sim O(N^2)$$
, where $T_{nm} = t_n t_m$

$$A \sim O(N^2)$$
, where $A_{nm} = a_n a_m$

This becomes infeasible when N exceeds \sim 10,000.

88

Chunking

Probability & Bayesian Inference

Maximize
$$\tilde{L}(\mathbf{a}) = \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m k(\mathbf{x}_n, \mathbf{x}_m)$$

subject to $0 \le a_n \le C$ and $\sum_{n=1}^{N} a_n t_n = 0$

Chunking (Vapnik, 1982) exploits the fact that the value of the Lagrangian is unchanged if we remove the rows and columns of the kernel matrix where $a_n = 0$ or $a_m = 0$.

Probability & Bayesian Inference

Minimize
$$C\sum_{n=1}^{N} \xi_n + \frac{1}{2} ||\mathbf{w}||^2$$
, where $C > 0$.

 $\xi_n = 0$ for points on or on the correct side of the margin boundary for their class

$$\xi_n = |t_n - y(\mathbf{x}_n)|$$
 for all other points.

Chunking

- Chunking (Vapnik, 1982)
 - 1. Select a small number (a 'chunk') of training vectors
 - 2. Solve the QP problem for this subset
 - 3. Retain only the support vectors
 - Consider another chunk of the training data
 - Ignore the subset of vectors in all chunks considered so far that lie on the correct side of the margin, since these do not contribute to the cost function
 - 6. Add the remainder to the current set of support vectors and solve the new QP problem
 - Return to Step 4
 - 8. Repeat until the set of support vectors does not change.

This method reduces memory requirements to $O(N_s^2)$, where N_s is the number of support vectors.

This may still be big!

Decomposition Methods

Probability & Bayesian Inference

It can be shown that the global QP problem is solved when, for all training vectors, satisfy the following optimality conditions:

$$a_i = 0 \Leftrightarrow t_i y(\mathbf{x}_i) \ge 1.$$

 $0 < a_i < C \Leftrightarrow t_i y(\mathbf{x}_i) = 1.$
 $a_i = C \Leftrightarrow t_i y(\mathbf{x}_i) \le 1.$

- Decomposition methods decompose this large QP problem into a series of smaller subproblems.
- Decomposition (Osuna et al, 1997)
 - Partition the training data into a small working subset B and a fixed subset N.
 - Minimize the global objective function by adjusting the coefficients in B
 - Swap 1 or more vectors in B for an equal number in N that fail to satisfy the optimality conditions
 - Re-solve the global QP problem for B
- \square Each step is $O(B)^2$ in memory.
- Osuna et al (1997) proved that the objective function decreases on each step and will converge in a finite number of iterations.

Sequential Minimal Optimization

- Sequential Minimal Optimization (Platt 1998) takes decomposition to the limit.
- On each iteration, the working set consists of just two vectors.
- The advantage is that in this case, the QP problem can be solved analytically.
- \square Memory requirement are O(N).
- □ Compute time is typically $O(N) O(N^2)$.

- LIBSVM is a widely used library for SVMs developed by Chang & Lin (2001).
 - Can be downloaded from www.csie.ntu.edu.tw/~cjlin/libsvm
 - MATLAB interface
 - Uses SMO
 - Will use for Assignment 2.

End of Lecture 14

LIBSVM Example: Face Detection

LIBSVM Example: MATLAB Interface

Probability & Bayesian Inference

[predicted_label, accuracy, decision_values] = sympredict(testt, testx, model);

Accuracy = 70.0212% (661/944) (classification)

Example

Relation to Logistic Regression

Probability & Bayesian Inference

The objective function for the soft-margin SVM can be written as:

$$\sum_{n=1}^{N} E_{SV} \left(y_n t_n \right) + \lambda \left\| \mathbf{w} \right\|^2$$

where $E_{SV}(z) = [1-z]_+$ is the hinge error function,

and
$$[z]_+ = z \text{ if } z \ge 0$$

= 0 otherwise.

For $t \in \{-1,1\}$, the objective function for a regularized version

of logistic regression can be written as:

$$\sum_{n=1}^{N} E_{LR} (y_n t_n) + \lambda \|\mathbf{w}\|^2$$

where $E_{LR}(z) = \log(1 + \exp(-z))$.

