
J. Elder CSE 4404/5327 Introduction to Machine Learning and Pattern Recognition 

LINEAR CLASSIFIERS 



Probability & Bayesian Inference 

J. Elder CSE 4404/5327 Introduction to Machine Learning and Pattern Recognition 

2 

Classification:  Problem Statement 

  In regression, we are modeling the relationship 
between a continuous input variable x and a 
continuous target variable t. 

  In classification, the input variable x may still be 
continuous, but the target variable is discrete. 

  In the simplest case, t can have only 2 values. 

  � 

e.g., Let t = +1�� assigned to C1

t = �1�� assigned to C2
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Example Problem 

  Animal or Vegetable? 



Probability & Bayesian Inference 

J. Elder CSE 4404/5327 Introduction to Machine Learning and Pattern Recognition 

4 

Linear Models for Classification 

  Linear models for classification separate input vectors into 
classes using linear (hyperplane) decision boundaries. 
  Example: 
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   2D  Input vector x

  
Two discrete classes C
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Two Class Discriminant Function 

   
y(x) = wt x +w

0

    

y(x) ! 0" x assigned to C
1

y(x) < 0" x assigned to C
2

   Thus y(x) = 0 defines the decision boundary

x2

x1

w
x

y(x)
‖w‖

x⊥

−w0
‖w‖

y = 0
y < 0

y > 0
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Two-Class Discriminant Function 

   
y(x) = wt x +w

0

    

y(x) ! 0" x assigned to C
1

y(x) < 0" x assigned to C
2

    

For convenience, let
w = w1 …wM!" #$

t
% w0  w1 …wM!" #$

t

and
x = x1 …xM!" #$

t
% 1 x1 …xM!" #$

t

   So we can express y(x) = w tx

x2
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w
x

y(x)
‖w‖
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y > 0
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Generalized Linear Models 

  For classification problems, we want y to be a predictor of t.  In other 
words, we wish to map the input vector into one of a number of discrete 
classes, or to posterior probabilities that lie between 0 and 1. 

  For this purpose, it is useful to elaborate the linear model by introducing a 
nonlinear activation function f, which typically will constrain y to lie between 
-1 and 1 or between 0 and 1. 

   y(x) = f w tx +w0( )
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The Perceptron 

  A classifier based upon this simple generalized linear model is 
called a (single layer) perceptron. 

  It can also be identified with an abstracted model of a neuron 
called the McCulloch Pitts model. 

   y(x) = f w tx +w0( )
    

y(x) ! 0" x assigned to C
1

y(x) < 0" x assigned to C
2
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Parameter Learning 

  How do we learn the parameters of a perceptron? 
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Outline 

  The Perceptron Algorithm 
  Least-Squares Classifiers 
  Fisher’s Linear Discriminant 
  Logistic Classifiers 
  Support Vector Machines  
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Case 1.  Linearly Separable Inputs 

  For starters, let’s assume that the training data is in 
fact perfectly linearly separable. 

  In other words, there exists at least one hyperplane 
(one set of weights) that yields 0 classification error. 

  We seek an algorithm that can automatically find 
such a hyperplane. 
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The Perceptron Algorithm 

  The perceptron algorithm was 
invented by Frank Rosenblatt 
(1962). 

  The algorithm is iterative. 
  The strategy is to start with a 

random guess at the weights w, 
and to then iteratively change 
the weights to move the 
hyperplane in a direction that 
lowers the classification error. 

Frank Rosenblatt (1928 – 1971) 
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The Perceptron Algorithm 

  Note that as we change the weights continuously, 
the classification error changes in discontinuous, 
piecewise constant fashion.   

  Thus we cannot use the classification error per se as 
our objective function to minimize. 

  What would be a better objective function?  
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The Perceptron Criterion 

  Note that we seek w such that 

  In other words, we would like 
 
  Thus we seek to minimize 

   

w tx ! 0 when t = +1
w tx < 0 when t = "1

   w
txntn ! 0 "n

    

EP w( ) = ! w txntn
n"M
#

where M  is the set of misclassified inputs.
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The Perceptron Criterion 

  Observations: 
 EP(w) is always non-negative. 
 EP(w) is continuous and 

piecewise linear, and thus 
easier to minimize. 

    

EP w( ) = ! w txntn
n"M
#

where M  is the set of misclassified inputs.

  EP w( )

 wi
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The Perceptron Algorithm 

  Gradient descent: 

    

EP w( ) = ! w txntn
n"M
#

where M  is the set of misclassified inputs.

  EP w( )

 wi

    

dEP w( )
dw

= ! xntn
n"M
#

where the derivative exists.

    
w! +1 = w! "#$EP w( ) = w! +# xntn

n%M
&
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The Perceptron Algorithm 

  Why does this make sense? 
  If an input from C1(t = +1) is misclassified, we need to 

make its projection on w more positive. 
  If an input from C2 (t = -1) is misclassified, we need to 

make its projection on w more negative. 

    
w! +1 = w! "#$EP w( ) = w t +# xntn

n%M
&
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The Perceptron Algorithm 

  The algorithm can be implemented sequentially: 
 Repeat until convergence: 

 For each input (xn, tn): 
  If it is correctly classified, do nothing 
  If it is misclassified, update the weight vector to be 

  Note that this will lower the contribution of input n to the 
objective function: 

   w
! +1 = w! +"xntn

   ! w (" )( )t xntn # ! w (" +1)( )t xntn = ! w (" )( )t xntn !$ xntn( )t xntn < ! w (" )( )t xntn.
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Not Monotonic 

  While updating with respect to a misclassified input 
n will lower the error for that input, the error for 
other misclassified inputs may increase. 

  Also, new inputs that had been classified correctly 
may now be misclassified. 

  The result is that the perceptron algorithm is not 
guaranteed to reduce the total error monotonically 
at each stage. 
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The Perceptron Convergence Theorem 

  Despite this non-monotonicity, if in fact the data are 
linearly separable, then the algorithm is 
guaranteed to find an exact solution in a finite 
number of steps (Rosenblatt, 1962). 
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Example 
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The First Learning Machine 

  Mark 1 Perceptron Hardware (c. 1960) 

Visual Inputs Patch board allowing  
configuration of inputsφ 

Rack of adaptive weights w 
(motor-driven potentiometers) 
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Practical Limitations 

  The Perceptron Convergence Theorem is an 
important result.  However, there are practical 
limitations: 
 Convergence may be slow 
  If the data are not separable, the algorithm will not 

converge. 
 We will only know that the data are separable once 

the algorithm converges. 
 The solution is in general not unique, and will depend 

upon initialization, scheduling of input vectors, and the 
learning rate η. 
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Generalization to inputs that are not linearly separable. 

  The single-layer perceptron can be generalized to 
yield good linear solutions to problems that are not 
linearly separable. 

  Example:  The Pocket Algorithm (Gal 1990) 
  Idea:   

 Run the perceptron algorithm 
 Keep track of the weight vector w* that has produced the 

best classification error achieved so far. 
  It can be shown that w* will converge to an optimal solution 

with probability 1. 
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Generalization to Multiclass Problems 

  How can we use perceptrons, or linear classifiers in 
general, to classify inputs when there are K > 2 
classes? 
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K>2 Classes 

  Idea #1: Just use K-1 discriminant functions, each of 
which separates one class Ck from the rest.  (One-
versus-the-rest classifier.) 

  Problem:  Ambiguous regions 

R1

R2

R3

?

C1

not C1

C2

not C2
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K>2 Classes 

  Idea #2: Use K(K-1)/2 discriminant functions, each 
of which separates two classes Cj, Ck from each 
other. (One-versus-one classifier.) 

  Each point classified by majority vote. 
  Problem:  Ambiguous regions 

R1

R2

R3

?C1

C2

C1

C3

C2

C3
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K>2 Classes 

  Idea #3:  Use K discriminant functions yk(x) 
  Use the magnitude of yk(x), not just the sign. 

   yk (x) = w k
t x

    x assigned to Ck  if yk (x) > y j (x)!j " k

   
Decision boundary yk (x) = y j (x)! wk "w j( )t x + wk0 "w j 0( ) = 0

 

Results in decision regions that are 
simply-connected and convex. Ri

Rj

Rk

xA

xB

x̂
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Example:  Kesler’s Construction 

  The perceptron algorithm can be generalized to K-
class classification problems. 

  Example:   
 Kesler’s Construction: 

 Allows use of the perceptron algorithm to simultaneously 
learn K separate weight vectors wi. 

  Inputs are then classified in Class i if and only if 

 The algorithm will converge to an optimal solution if a 
solution exists, i.e., if all training vectors can be correctly 
classified according to this rule. 

   w i
tx > w j

t x  !j " i
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1-of-K Coding Scheme 

  When there are K>2 classes, target variables can 
be coded using the 1-of-K coding scheme: 

    Input from Class Ci ! t = [0 0 …1…0 0]t

Element i 
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Computational Limitations of Perceptrons 

  Initially, the perceptron was 
thought to be a potentially 
powerful learning machine that 
could model human neural 
processing. 

  However, Minsky & Papert 
(1969) showed that the single-
layer perceptron could not learn 
a simple XOR function.  

  This is just one example of a 
non-linearly separable pattern 
that cannot be learned by a 
single-layer perceptron.  

  x1

  x2

Marvin Minsky (1927 - ) 
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Multi-Layer Perceptrons 

  Minsky & Papert’s book was widely 
misinterpreted as showing that 
artificial neural networks were 
inherently limited. 

  This contributed to a decline in the 
reputation of neural network 
research through the 70s and 80s. 

  However, their findings apply only 
to single-layer perceptrons. Multi-
layer perceptrons are capable of 
learning highly nonlinear functions, 
and are used in many practical 
applications.  



End of Lecture 11  
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Outline 

  The Perceptron Algorithm 
  Least-Squares Classifiers 

  Fisher’s Linear Discriminant 
  Logistic Classifiers 
  Support Vector Machines  
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Dealing with Non-Linearly Separable Inputs 

  The perceptron algorithm fails when the training 
data are not perfectly linearly separable. 

  Let’s now turn to methods for learning the 
parameter vector w of a perceptron (linear 
classifier) even when the training data are not 
linearly separable. 



Probability & Bayesian Inference 

J. Elder CSE 4404/5327 Introduction to Machine Learning and Pattern Recognition 

36 

The Least Squares Method  

  In the least squares method, we simply fit the (x, t) 
observations with a hyperplane y(x). 

  Note that this is kind of a weird idea, since the t 
values are binary (when K=2), e.g., 0 or 1. 

  However it can work pretty well. 
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Least Squares: Learning the Parameters 

   yk (x) = w k
t x +wk0

    ! y(x) = !Wt !x

    

where 
!x = (1,xt )t

!W is a (D +1) ! K  matrix whose kth column is !w k = w0,w k
t( )t  

   For each class k !1…K :

   Assume D ! dimensional input vectors x.
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Learning the Parameters 

  Method #2:  Least Squares 
    y(x) = !Wt !x

    Training dataset xn,tn( ), n = 1,…,N

   Let T be the N ! K  matrix whose nth  row is tn
t

   where we use the 1-of-K  coding scheme for tn

    Let !X be the N ! (D +1) matrix whose nth  row is !xn
t

    

Setting derivative wrt !W to 0 yields:
!W = !Xt !X( )!1 !XtT = !X†T

    Let RD
!W( ) = !X !W ! T

    
Then we define the error as ED

!W( ) = 1
2

Rij
2

i, j
! = 1

2
Tr RD

!W( )t RD
!W( ){ }



Probability & Bayesian Inference 

J. Elder CSE 4404/5327 Introduction to Machine Learning and Pattern Recognition 

39 

Outline 

  The Perceptron Algorithm 
  Least-Squares Classifiers 
  Fisher’s Linear Discriminant 

  Logistic Classifiers 
  Support Vector Machines  
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Fisher’s Linear Discriminant 

  Another way to view linear discriminants:  find the 1D subspace 
that maximizes the separation between the two classes. 

!2 2 6

!2

0

2

4

    
Let m1 =

1
N1

xn
n!C1

" , m2 =
1

N2

xn
n!C2

"

   For example, might choose w  to maximize w t m2 !m1( ),  subject to w = 1

  This leads to w !m2 "m1

 

However, if conditional distributions are not isotropic, 
this is typically not optimal.
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Fisher’s Linear Discriminant 

!2 2 6

!2

0

2

4

   Let m1 = w tm1,   m2 = w tm2  be the conditional means on the 1D subspace.

   
Let sk

2 = yn ! mk( )2

n"Ck

#  be the within-class variance on the subspace for class Ck

   
The Fisher criterion is then J(w) =

m2 ! m1( )2

s1
2 + s2

2

    

This can be rewritten as 

J(w) =
w tSBw
w tSW w

where 

SB = m2 !m1( ) m2 !m1( )t  is the between-class variance

and 

SW = xn !m1( ) xn !m1( )t
n"C1

# + xn !m2( ) xn !m2( )t
n"C2

#  is the within-class variance

   J(w) is maximized for w !SW
"1 m2 "m1( )
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Connection between Least-Squares and FLD 

   

Change coding scheme used in least-squares method to 

tn =
N
N1

 for C1

tn = ! N
N2

 for C2

   

Then one can show that the ML w  satisfies
w !SW

"1 m2 "m1( )
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Least Squares Classifier 

  Problem #1:  Sensitivity to outliers 

!4 !2 0 2 4 6 8

!8

!6

!4

!2

0

2

4

!4 !2 0 2 4 6 8

!8

!6

!4

!2

0

2

4
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Least Squares Classifier 

  Problem #2:  Linear activation function is not a 
good fit to binary data.  This can lead to problems. 

!6 !4 !2 0 2 4 6
!6

!4

!2

0

2

4

6
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Outline 

  The Perceptron Algorithm 
  Least-Squares Classifiers 
  Fisher’s Linear Discriminant 
  Logistic Classifiers 

  Support Vector Machines  
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Logistic Regression (K = 2) 

    

p C1 |!( ) = y !( ) = " w t!( )
p C2 |!( ) = 1# p C1 |!( )   

where ! (a) = 1
1+ exp("a)

140 8 Classification models

!"

Figure 8.3 Logistic regression model in 1D and 2D. a) One dimensional fit.
Green points denote set of examples S0 where y = 0. Pink points denote
set of examples S1 where y = 1. Note that in this (and all future figures
in this chapter) we have only plotted the probability Pr(y = 1|x) (compare
to figure 8.2c). The probability Pr(y = 0|x) can be trivially computed as
1 − Pr(y = 1|x). b) Two dimensional fit. Here, the model has a sigmoid
profile in the direction of the gradient φ and is constant in the orthogonal
directions. The decision boundary (blue line) is linear.

As usual, however, it is simpler to maximize the logarithm L of this expression.
Since the logarithm is a monotonic transformation, it does not change the position
of the maximum with respect to φ. However, applying the logarithm the product
and replaces it with a sum so that

L =
I∑

i=1

yi log

[
1

1 + exp[−φTxi]

]
+

I∑

i=1

(1− yi) log

[
exp[−φTxi]

1 + exp[−φTxi]

]
. (8.6)

The derivative of the log likelihood L with respect to the parameters φ is

∂L

∂φ
=

I∑

i=1

(
1

1 + exp[−φTxi]
− yi

)
xi =

I∑

i=1

(sig[ai]− yi)xi. (8.7)

Unfortunately, when we equate this expression to zero, there is no way to re-
arrange to get a closed form solution for the parameters φ. Instead we must
rely on a non-linear optimization technique to find the maximum of this function.
We’ll now sketch the main ideas behind non-linear optimization. We defer a more
detailed discussion until section 8.10.

In non-linear optimization, we start with an initial estimate of the solution
φ and iteratively improve it. The methods we will discuss rely on computing

  w
t!

    p C1 |!( ) = y !( ) = " w t!( )

  x1
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Logistic Regression 

  Number of parameters 
  Logistic regression: M 
 Gaussian model: 2M + 2M(M+1)/2 + 1 = M2+3M+1 

    

p C1 |!( ) = y !( ) = " w t!( )
p C2 |!( ) = 1# p C1 |!( )

  

where

! (a) = 1
1+ exp("a)
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ML for Logistic Regression 

   
p t | w( ) = yn

tn 1! yn{ }1!tn

n=1

N

"      where t = t1,…,tN( )t and yn = p C1 |!n( )

   We define the error function to be E(w) = ! log p t | w( )

   Given yn = ! an( )  and an = w t"n,  one can show that

   
!E(w) = yn " tn( )#n

n=1

N

$

  Unfortunately, there is no closed form solution for w.



End of Lecture 12  
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ML for Logistic Regression:   

  Iterative Reweighted Least Squares 
 Although there is no closed form solution for the ML 

estimate of w, fortunately, the error function is convex. 
 Thus an appropriate iterative method is guaranteed to 

find the exact solution. 
 A good method is to use a local quadratic 

approximation to the log likelihood function (Newton-
Raphson update): 

   

w (new ) = w (old ) !H!1"E(w)
where H is the Hessian matrix of E(w)
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ML for Logistic Regression 

   

w (new ) = w (old ) !H!1"E(w)
where H is the Hessian matrix of E(w) :

   

Thus

wnew = w (old ) ! "tR"( )!1
"t y ! t( )

   

H = !tR!
where R  is the N " N  diagonal weight matrix with Rnn = yn 1# yn( )  

   

(Note that, since Rnn ! 0, R  is positive semi-definite, and hence H is positive semi-definite
Thus E(w) is convex.)
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ML for Logistic Regression 

  Iterative Reweighted Least Squares 

142 8 Classification models

!

"

#

Figure 8.4 Parameter estimation for logistic regression with 1D data. a)
In maximum likelihood learning, we seek the maximum of Pr(y|X,φ) with
respect to φ. b) In practice, we instead maximize log likelihood: notice
that the peak is in the same place. Crosses show results of 2 iterations of
optimization using Newton’s method. c) The logistic sigmoid functions asso-
ciated with the parameters at each optimization step. As the log likelihood
increases, the model fits the data more closely: the green points represent
data where y = 0 and the purple points represent data where y = 1 and so
we expect the chosen model to increase from right to left just like curve 3.

For general functions, gradient ascent and Newton approaches only find local
maxima: we cannot be certain that there is not a taller peak in the likelihood
function elsewhere. However the log likelihood for logistic regression has a special
property: it is a convex function of the parameters φ. For convex functions there
are never multiple maxima and gradient based approaches are guaranteed to find
the global maximum. It is possible to establish whether a function is convex or
not by examining the Hessian matrix. If this is positive definite for all φ then the
function is convex. This is obviously the case for logistic regression as the Hessian
(equation 8.10) consists of a positive weighted sum of outer products.

The logistic regression model as described has a number of problems:

1. It is overconfident as it was learnt using maximum likelihood

2. It can only describe linear decision boundaries

3. It is computationally innefficient and may overlearn the data in high dimen-
sions.

In the remaining part of this chapter we will extend this model to cope with
these problems (figure 8.5)

142 8 Classification models
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Figure 8.4 Parameter estimation for logistic regression with 1D data. a)
In maximum likelihood learning, we seek the maximum of Pr(y|X,φ) with
respect to φ. b) In practice, we instead maximize log likelihood: notice
that the peak is in the same place. Crosses show results of 2 iterations of
optimization using Newton’s method. c) The logistic sigmoid functions asso-
ciated with the parameters at each optimization step. As the log likelihood
increases, the model fits the data more closely: the green points represent
data where y = 0 and the purple points represent data where y = 1 and so
we expect the chosen model to increase from right to left just like curve 3.

For general functions, gradient ascent and Newton approaches only find local
maxima: we cannot be certain that there is not a taller peak in the likelihood
function elsewhere. However the log likelihood for logistic regression has a special
property: it is a convex function of the parameters φ. For convex functions there
are never multiple maxima and gradient based approaches are guaranteed to find
the global maximum. It is possible to establish whether a function is convex or
not by examining the Hessian matrix. If this is positive definite for all φ then the
function is convex. This is obviously the case for logistic regression as the Hessian
(equation 8.10) consists of a positive weighted sum of outer products.

The logistic regression model as described has a number of problems:

1. It is overconfident as it was learnt using maximum likelihood

2. It can only describe linear decision boundaries

3. It is computationally innefficient and may overlearn the data in high dimen-
sions.

In the remaining part of this chapter we will extend this model to cope with
these problems (figure 8.5)

  w1

  w2   w
t!

    p C1 |!( ) = y !( ) = " w t!( )
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Logistic Regression  

  For K>2, we can generalize the activation function 
by modeling the posterior probabilities as 

   

p Ck |!( ) = yk !( ) = exp ak( )
exp aj( )

j
"

where the activations ak  are given by

ak = w k
t!
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Example 

!6 !4 !2 0 2 4 6
!6

!4

!2

0

2

4

6

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

Least-Squares Logistic 
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Outline 

  The Perceptron Algorithm 
  Least-Squares Classifiers 
  Fisher’s Linear Discriminant 
  Logistic Classifiers 
  Support Vector Machines  
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Motivation 

  The perceptron algorithm is guaranteed to provide a 
linear decision surface that separates the training data, 
if one exists. 

  However, if the data are linearly separable, there are 
in general an infinite number of solutions, and the 
solution returned by the perceptron algorithm depends 
in a complex way on the initial conditions, the learning 
rate and the order in which training data are 
processed. 

  While all solutions achieve a perfect score on the 
training data, they won’t all necessarily generalize as 
well to new inputs. 
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Which solution would you choose? 
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The Large Margin Classifier 

  Unlike the Perceptron Algorithm, Support Vector 
Machines solve a problem that has a unique 
solution:  they return the linear classifier with the 
maximum margin, that is, the hyperplane that 
separates the data and is farthest from any of the 
training vectors. 

  Why is this good? 
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Support Vector Machines 

   SVMs are based on the linear model y(x) = w t!(x) + b

    

Assume training data x1,…,xN  with corresponding target values
t1,…,tN, tn !{"1,1}.

   x classified according to sign of y(x).

 Assume for the moment that the training data are linearly separable in feature space.

    Then !w,b : tny xn( ) > 0 "n #[1,…N]
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Maximum Margin Classifiers 

  When the training data are linearly separable, there are generally an 
infinite number of solutions for (w, b) that separate the classes exactly. 

  The margin of such a classifier is defined as the orthogonal distance in 
feature space between the decision boundary and the closest training 
vector. 

  SVMs are an example of a maximum margin classifer, which finds the 
linear classifier that maximizes the margin. 

y = 1
y = 0

y = −1

margin
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Probabilistic Motivation 

  The maximum margin classifier has a probabilistic motivation. 

y = 1
y = 0

y = −1

margin

 

If we model the class-conditional densities with a KDE using 
Gaussian kernels with variance ! 2, then in the limit as ! " 0, 
the optimal linear decision boundary" maximum margin linear classifier.
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Two Class Discriminant Function 

   
y(x) = wt x +w

0

    

y(x) ! 0" x assigned to C1

y(x) < 0" x assigned to C2

   Thus y(x) = 0 defines the decision boundary

x2

x1

w
x

y(x)
‖w‖

x⊥

−w0
‖w‖

y = 0
y < 0

y > 0

R2

R1Recall: 
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Maximum Margin Classifiers 

y = 1
y = 0

y = −1

margin

   

Distance of point xn  from decision surface is given by:

tny xn( )
w

=
tn w t! xn( ) + b( )

w

   

Thus we seek:

argmax
w ,b

1
w

min
n

tn w t! xn( ) + b( )"
#

$
%

&
'
(

)(

*
+
(

,(



Probability & Bayesian Inference 

J. Elder CSE 4404/5327 Introduction to Machine Learning and Pattern Recognition 

64 

Maximum Margin Classifiers 

y = 1
y = 0

y = −1

margin

   

Distance of point xn  from decision surface is given by:

tny xn( )
w

=
tn w t! xn( ) + b( )

w

  

Note that rescaling w  and b by the same factor 
leaves the distance to the decision surface unchanged.

 

Thus, wlog, we consider only solutions that satisfy:

   

tn w t! xn( ) + b( ) = 1.

for the point xn  that is closest to the decision surface.
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Quadratic Programming Problem 

y = 1
y = 0

y = −1

margin

   
Then all points xn  satisfy tn w t! xn( ) + b( ) "1

  

Points for which equality holds are said to be active.
All other points are inactive.

   

Now argmax
w ,b

1
w

min
n

tn w t! xn( ) + b( )"
#

$
%

&
'
(

)(

*
+
(

,(

-
1
2

argmin w
2

w

Subject to tn w t! xn( ) + b( ) .1 /xn

  This is a quadratic programming problem.

  Solving this problem will involve Lagrange multipliers.



Lagrange Multipliers 
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Lagrange Multipliers (Appendix C.4 in textbook) 

  Used to find stationary points of a function 
subject to one or more constraints. 

  Example (equality constraint): 

 

  Observations: 

∇f(x)

∇g(x)

xA

g(x) = 0 Joseph-Louis Lagrange 
1736-1813 

   Maximize f x( )  subject to g x( ) = 0.

   1. At any point on the constraint surface, !g x( )  must be orthogonal to the surface.

   

2. Let x *  be a point on the constraint surface where f (x) is maximized.
    Then !f (x) is also orthogonal to the constraint surface.

   

3. ! "# $ 0 such that %f (x)+ #%g(x) = 0 at x * .
     #  is called a Lagrange multiplier.
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Lagrange Multipliers (Appendix C.4 in textbook) 

  Defining the Lagrangian function as: 

    we then have 

 

    and 

∇f(x)

∇g(x)

xA

g(x) = 0

   !" # 0 such that $f (x)+ "$g(x) = 0 at x * .

   L x,!( ) = f (x)+ !g(x)

   !xL x,"( ) = 0.

   

!L x,"( )
!"

= 0.



Probability & Bayesian Inference 

J. Elder CSE 4404/5327 Introduction to Machine Learning and Pattern Recognition 

69 

Example 

  Find the stationary point of 

   subject to g(x1, x2) = 0

x1

x2

(x!
1, x

!
2)

   L x,!( ) = f (x)+ !g(x)

  
f x1,x2( ) = 1! x1

2 ! x2
2

  
g x1,x2( ) = x1 + x2 !1= 0



End of Lecture 13  
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Inequality Constraints 

  There are 2 cases: 

1.  x* on the interior (e.g., xB) 

  Here g(x) > 0 and the stationary condition is simply 

  This corresponds to a stationary point of the Lagrangian where 
λ= 0. 

2.  x* on the boundary (e.g., xA) 

  Here g(x) = 0 and the stationary condition is 

  This corresponds to a stationary point of the Lagrangian where 

λ> 0. 

  Thus the general problem can be expressed as 
maximizing the Lagrangian subject to 

∇f(x)

∇g(x)

xA

xB

g(x) = 0
g(x) > 0

   Maximize f x( )  subject to g x( ) ! 0.

   !f (x) = 0.

   !f (x) = "#!g(x), # > 0.

  

1. g(x) ! 0
2. " ! 0
3. "g(x) = 0

   L x,!( ) = f (x)+ !g(x)

Karush-Kuhn-Tucker (KKT) conditions 
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Minimizing vs Maximizing 

  If we want to minimize f(x) subject to g(x) ≥ 0, 
then the Lagrangian becomes 

   

L x,!( ) = f (x)" !g(x)

with ! # 0.
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Extension to Multiple Constraints 

  Suppose we wish to maximize f(x) subject to 

  We then find the stationary points of 

   subject to  

    

gj (x) = 0 for j = 1,…,J

hk (x) ! 0 for k = 1,…,K

   
L x,!( ) = f (x)+ ! jg j (x)

j=1

J

" + µkhk (x)
k=1

K

"

   

hk (x) ! 0
µk ! 0
µkhk (x) = 0



Back to our quadratic programming problem… 
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Quadratic Programming Problem 

y = 1
y = 0

y = −1

margin

   

1
2

argmin w
2

w

,  subject to tn w t! xn( ) + b( ) "1 #xn

   

Solve using Lagrange multipliers an :

L(w,b,a) = 1
2

w
2
! an tn w t" xn( ) + b( )!1{ }

n=1

N

#
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Dual Representation 

y = 1
y = 0

y = −1

margin

   

Setting derivatives with respect to w and b to 0, we get:

w = a
n
t

n
!(x

n
)

n=1

N

"

a
n
t

n
n=1

N

" = 0

   

Solve using Lagrange multipliers an :

L(w,b,a) = 1
2

w
2
! an tn w t" xn( ) + b( )!1{ }

n=1

N

#
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Dual Representation 

y = 1
y = 0

y = −1

margin

    

Substituting leads to the dual representation 
of the maximum margin problem, in which we maximize:

!L a( ) = an
n=1

N

! " 1
2

anamtntmk xn,xm( )
m=1

N

!
n=1

N

!
with respect to a, subject to:
an # 0 $n

antn
n=1

N

! = 0

and where k x, %x( ) = &(x)t&( %x )

   

w = antn!(xn)
n=1

N

"

antn
n=1

N

" = 0
   
L(w,b,a) = 1

2
w

2
! an tn w t" xn( ) + b( )!1{ }

n=1

N

#
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Dual Representation 

   

Using w = antn!(xn)
n=1

N

" ,  a new point x is classified by computing

y(x) = antnk(x,xn)
n=1

N

" + b

   

The Karush-Kuhn-Tucker (KKT) conditions for this constrained optimization problem are:
an ! 0

tny xn( ) "1! 0

an tny xn( ) "1{ } = 0

   Thus for every data point, either an = 0 or tny xn( ) = 1.

y = 1

y = 0

y = −1

support vectors 
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Solving for the Bias 

   

Once the optimal a is determined, the bias b can be computed 
by noting that any support vector xn  satisfies tny xn( ) = 1.

   

A more numerically accurate solution can be obtained 

by averaging over all support vectors:

b =
1

N
S

t
n
! a

m
t

m
k(x

n
,x

m
)

m"S

#$
%&

'
()n"S

#
where S  is the index set of support vectors and N

S
 is the number of support vectors.

   
Using y(x) = a

n
t

n
k (x,x

n
)

n=1

N

! + b

   

we have t
n

a
m
t

m
k (x

n
,x

m
)

m=1

N

! + b
"

#$
%

&'
= 1

   
and so b = t

n
! a

m
t

m
k(x

n
,x

m
)

m=1

N

"
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Example (Gaussian Kernel) 

Input Space 

  x1

  x2



Probability & Bayesian Inference 

J. Elder CSE 4404/5327 Introduction to Machine Learning and Pattern Recognition 

81 

Overlapping Class Distributions 

  The SVM for non-overlapping class distributions is determined 
by solving 

y = 1

y = 0

y = −1

ξ > 1

ξ < 1

ξ = 0

ξ = 0

   

Alternatively, this can be expressed as the minimization of

E! y xn( )tn "1( )
n=1

N

# + $ w
2

where E!(z) is 0 if z % 0, and ! otherwise.

 

This forces all points to lie on or outside the margins, 
on the correct side for their class.

 To allow for misclassified points, we have to relax this E!  term.

   

1
2

argmin w
2

w

,  subject to tn w t! xn( ) + b( ) "1 #xn
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Slack Variables 

y = 1

y = 0

y = −1

ξ > 1

ξ < 1

ξ = 0

ξ = 0

   To this end, we introduce N  slack variables !n " 0, n = 1,…N.

  !n = 0 for points on or on the correct side of the margin boundary for their class

   
!n = tn " y xn( )  for all other points.

  

Thus !n <1 for points that are correctly classified
!n >1 for points that are incorrectly classified

   
We now minimize C !n

n=1

N

" +
1
2

w
2
, where C > 0.

   subject to tny xn( ) !1" #n,  and #n ! 0, n = 1,…N
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Dual Representation 

    

This leads to a dual representation, where we maximize

!L(a) = an
n=1

N

! "
1
2

anamtntmk xn,xn( )
m=1

N

!
n=1

N

!
with constraints
0 # an #C
and

antn
n=1

N

! = 0

y = 1

y = 0

y = −1

ξ > 1

ξ < 1

ξ = 0

ξ = 0
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Support Vectors 

   

Again, a new point x is classified by computing

y(x) = antnk(x,xn)
n=1

N

! + b

  For points that are on the correct side of the margin, an = 0.

 

Thus support vectors consist of points between their margin and the decision boundary,
as well as misclassified points.

y = 1

y = 0

y = −1

ξ > 1

ξ < 1

ξ = 0

ξ = 0

 

In other words, all points that are not on 
the right side of their margin are support vectors.
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Bias 

   

Again, a new point x is classified by computing

y(x) = antnk(x,xn)
n=1

N

! + b

y = 1

y = 0

y = −1

ξ > 1

ξ < 1

ξ = 0

ξ = 0

    

Once the optimal a is determined, the bias b can be computed from

b =
1

NM

tn ! amtmk(xn,xm)
m"S
#$

%&
'
()n"M

#
where 
S is the index set of support vectors
NS  is the number of support vectors
M  is the index set of points on the margins
NM  is the number of points on the margins



Probability & Bayesian Inference 

J. Elder CSE 4404/5327 Introduction to Machine Learning and Pattern Recognition 

86 

Solving the Quadratic Programming Problem 

  Problem is convex. 
  Standard solutions are generally O(N3). 

  Traditional quadratic programming techniques often infeasible 
due to computation and memory requirements. 

  Instead, methods such as sequential minimal optimization can 
be used, that in practice are found to scale as O(N) - O(N2). 

    

Maximize !L(a) = an
n=1

N

! " 1
2

anamtntmk xn,xm( )
m=1

N

!
n=1

N

!

subject to 0 # an #C  and antn
n=1

N

! = 0
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Chunking 

  Conventional quadratic programming solution requires that 
matrices with N2 elements be maintained in memory. 

  This becomes infeasible when N exceeds ~10,000. 

     K !O N2( ), where Knm = k xn,xm( )

    
T !O N2( ), where Tnm = tntm

    
A !O N2( ), where Anm = anam

    

Maximize !L(a) = an
n=1

N

! " 1
2

anamtntmk xn,xm( )
m=1

N

!
n=1

N

!

subject to 0 # an #C  and antn
n=1

N

! = 0
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Chunking 

  Chunking (Vapnik, 1982) exploits the fact that the 
value of the Lagrangian is unchanged if we remove 
the rows and  columns of the kernel matrix where an 
= 0 or am = 0. 

 

    

Maximize !L(a) = an
n=1

N

! " 1
2

anamtntmk xn,xm( )
m=1

N

!
n=1

N

!

subject to 0 # an #C  and antn
n=1

N

! = 0
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Chunking 

  Chunking (Vapnik, 1982) 
1.  Select a small number (a ‘chunk’) of training vectors 

2.  Solve the QP problem for this subset 

3.  Retain only the support vectors 

4.  Consider another chunk of the training data 

5.  Ignore the subset of vectors in all chunks considered so far that lie on the correct side of 
the margin, since these do not contribute to the cost function 

6.  Add the remainder to the current set of support vectors and solve the new QP problem 

7.  Return to Step 4 

8.  Repeat until the set of support vectors does not change. 

   
Minimize C !n

n=1

N

" + 1
2

w
2
, where C > 0.

  !n = 0 for points on or on the correct side of the margin boundary for their class

   
!n = tn " y xn( )  for all other points.

   

This method reduces memory requirements to O NS
2( ), where NS  is the number of support vectors.

This may still be big!
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Decomposition Methods 
  It can be shown that the global QP problem is solved when, for all training vectors, 

satisfy the following optimality conditions: 

 

  Decomposition methods decompose this large QP problem into a series of smaller 
subproblems. 

  Decomposition (Osuna et al, 1997) 
  Partition the training data into a small working subset B and a fixed subset N. 

  Minimize the global objective function by adjusting the coefficients in B 

  Swap 1 or more vectors in B for an equal number in N that fail to satisfy the optimality 
conditions 

  Re-solve the global QP problem for B 

  Each step is O(B)2 in memory. 

  Osuna et al (1997) proved that the objective function decreases on each step and 
will converge in a finite number of iterations. 

   

a
i
= 0 ! t

i
y x

i( ) "1.

0 < a
i
<C ! t

i
y x

i( ) = 1.

a
i
=C ! t

i
y x

i( ) #1.
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Sequential Minimal Optimization 

  Sequential Minimal Optimization (Platt 1998) takes 
decomposition to the limit. 

  On each iteration, the working set consists of just 
two vectors. 

  The advantage is that in this case, the QP problem 
can be solved analytically. 

  Memory requirement are O(N). 
  Compute time is typically O(N) – O(N2). 
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LIBSVM 

  LIBSVM is a widely used library for SVMs 
developed by Chang & Lin (2001). 
 Can be downloaded from 

www.csie.ntu.edu.tw/~cjlin/libsvm 
 MATLAB interface 
 Uses SMO 
 Will use for Assignment 2. 



End of Lecture 14  
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LIBSVM Example:  Face Detection 

Face 

Non-Face 

Preprocess: 
Subsample & 

Normalize 

Preprocess: 
Subsample & 

Normalize 

 µ = 0, ! 2 = 1

 µ = 0, ! 2 = 1

svmtrain 
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LIBSVM Example:  MATLAB Interface 

model=svmtrain(traint, trainx, '-t 0'); 

[predicted_label, accuracy, decision_values] = svmpredict(testt, testx, model); 

Accuracy = 70.0212% (661/944) (classification) 

Selects linear SVM 
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Example 

!2 0 2

!2

0

2

Input Space 

  x1

  x2
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Relation to Logistic Regression 

−2 −1 0 1 2
z

E(z)

   

The objective function for the soft-margin SVM can be written as:

ESV yntn( )
n=1

N

! + " w
2

where ESV z( ) = 1# z$% &'+  is the hinge error function,

and z$% &'+ = z if  z ( 0

= 0 otherwise.

   

For t !{"1,1},  the objective function for a regularized version 
of logistic regression can be written as:

ELR yntn( )
n=1

N

# + $ w
2

where ELR z( ) = log 1+ exp("z)( ).

 ESV

 ELR


